- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- 反光衣识别漏检率 30%?陌讯多尺度模型实测优化
在建筑工地、交通指挥等场景中,反光衣是保障作业人员安全的重要装备,对其进行精准识别是智能监控系统的核心功能之一。但传统视觉算法在实际应用中却屡屡碰壁:强光下反光衣易与背景混淆、远距离小目标漏检率高达30%、复杂场景下模型泛化能力不足[实测数据来源:某智慧工地项目2024年Q1日志]。这些问题直接导致安全监控系统预警滞后,给安全生产埋下隐患。一、技术解析:反光衣识别的核心难点与陌讯算法创新反光衣识别
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])基于历史对话重新生成Query?
985小水博一枚呀
AI大模型学习路线人工智能学习langchainRAG
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])基于历史对话重新生成Query?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])基于历史对话重新生成Query?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])基于历史对话重新生成Q
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])其他Query优化相关策略?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])其他Query优化相关策略?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])其他Query优化相关策略?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])其他Query优化相关策略?一
- GoView 强势入驻 GitCode:拖拽低代码,打造高颜值数据大屏
GitCode 代码君
gitcode低代码开源
信息可视化时代,数字大屏日益成为展示核心KPI、运营状态、监控预警的主流形式。然而,用传统方式开发一个定制化数字大屏需要解决多少问题?1.繁复的数据源集成,各种不同的协议和格式……2.让人晕头转向的可视化逻辑,调动艰难的样式、布局、动画,和往往难以统一的风格3.牵一发而动全身的代码结构,就想换个主题色结果开启的全局CSS大冒险……现在,一个开源项目即可搞定上述问题——拖拽式低代码数字可视化平台Go
- DeepSeek解读道德经 第五十九章
cal_
道德经道德经
一、原文与译文原文:治人事天,莫若啬。夫唯啬,是谓早服;早服谓之重积德;重积德则无不克;无不克则莫知其极;莫知其极,可以有国;有国之母,可以长久。是谓深根固柢,长生久视之道。译文:治理百姓侍奉天道,没有比珍爱能量更重要的。唯有珍惜能量,才叫早作准备;早作准备就是厚积德性;厚积德性则无往不胜;无往不胜则力量无穷;力量无穷便可守护国家;掌握治国根本,方能长久延续。这便是根深柢固、长生久存之道。二、核心
- SQL注入与防御-第六章-3:利用操作系统--巩固访问
一、核心逻辑与价值“巩固访问”是SQL注入攻击的持久化控制阶段,通过篡改数据库权限、植入隐蔽后门(如“数据库rootkit”)、利用系统组件(如SQLServerSOAP端点),实现对数据库及关联服务器的长期控制,绕过常规防御检测,扩大攻击影响。二、技术实现与典型场景(一)数据库Rootkit植入(以Oracle为例)1.原理通过篡改数据库元数据、系统视图,隐藏恶意用户、权限或操作,类似操作系统R
- 街道垃圾识别难?陌讯视觉算法实测准确率突破95%
2501_92487900
算法边缘计算目标检测视觉检测计算机视觉
开篇痛点:街道垃圾识别的技术挑战在智慧城市和环保监管场景中,街道垃圾的实时检测一直是个难题。传统视觉算法(如YOLOv5、FasterR-CNN)在复杂街道场景下表现不佳,主要面临以下问题:光照干扰:早晚光线变化导致误检(如阴影被识别为垃圾)小目标漏检:饮料瓶、烟头等小物体在640x640输入下仅占10x10像素遮挡问题:垃圾桶周边堆积物造成特征混淆某环保科技公司实测数据显示,开源模型在真实场景中
- 占道识别漏检率 30%?陌讯多模态算法实测优化
2501_92487926
算法ai计算机视觉视觉检测
开篇:占道经营识别的三大技术痛点在城市管理智能化进程中,占道经营自动识别系统常面临三大核心难题:一是早晚光线剧变导致传统模型mAP骤降15-20%;二是流动摊贩与行人的特征混淆,误判率高达28%;三是密集场景下检测速度跌破15FPS,无法满足实时性要求[1]。某一线城市试点数据显示,基于开源YOLOv5的识别系统日均漏检事件超300起,人工复核成本占总投入的42%。这些问题的根源在于传统算法采用单
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 重型机械识别漏检率高?陌讯算法实测降 35%
在重型机械作业场景中,传统视觉识别系统常面临三大痛点:大型设备遮挡严重导致漏检率超20%、金属表面反光使特征提取失效、多机型混合作业时模型泛化能力不足。某港口集团曾反馈,其基于开源YOLOv5部署的机械监控系统,在暴雨天气下误报率飙升至37%,直接影响作业调度效率[实测数据来源:某港口2024年Q1运维报告]。技术解析:陌讯算法的三重突破陌讯视觉算法针对重型机械识别的特殊性,采用了创新的"动态注意
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])MultiQuery retriever详解?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1]
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- 时尚搭配助手,深度解析用Keras构建智能穿搭推荐系统
忆愿
高质量领域文章keras人工智能深度学习机器学习python
文章目录引言:当算法遇见时尚第一章数据工程:时尚系统的基石1.1数据获取的多元化途径1.2数据预处理全流程1.2.1图像标准化与增强1.2.2多模态数据处理第二章模型架构设计:从分类到推荐2.1基础CNN模型(图像分类)2.2多任务学习模型(属性联合预测)第三章推荐算法核心3.1协同过滤与内容推荐的融合第四章系统优化4.1注意力机制应用第五章实战演练5.2实时推荐API实现第六章前沿探索:时尚AI
- 计算机网络(王道考研)笔记个人整理——第六章:应用层
onlyTonight
计算机网络计算机网络考研笔记
第六章:应用层点击上方专栏查看六章全部笔记个人笔记整理位置:个人笔记完整版b站视频:王道考研(2019版)概述应用层对应用程序的通信提供服务。应用层协议定义:应用程序交换的报文类型(请求or响应);各个报文类型的语法,如报文中的各个字段及其详细描述;字段的语义,即包含在字段中的信息的含义;进程何时、如何发送报文,以及对报文进行响应的规则。功能:文件传输、访问和管理;电子邮件;虚拟终端;查询服务和远
- 代码训练营DAY13 第六章 二叉树part01
_Coin_-
数据结构算法
理论基础二叉树种类存储方式遍历方式深度优先搜索&广度优先搜索深度:前序遍历、中序遍历、后序遍历(中间在前or中or后,左右顺序固定)广度:二叉树定义递归遍历(必须掌握)递归分析三步法1、确定递归函数的参数和返回值2、确定终止条件3、确定单层递归逻辑前序遍历144.二叉树的前序遍历-力扣(LeetCode)/***Definitionforabinarytreenode.*structTreeNod
- 未来已来:美颜SDK如何通过深度学习实现个性化美颜形象?
美狐美颜SDK开放平台
美颜sdk直播美颜sdk视频美颜sdk深度学习人工智能直播美颜sdk美颜sdk美颜api视频美颜sdk直播美颜工具
你有没有这样的时刻:打开相机滤镜,调了半天,依旧找不到最适合自己的美颜效果?或是刷短视频时,惊艳于博主的“自然”颜值,却又发现自己的滤镜总显得太“假”?这背后,其实藏着一个越来越热门的技术关键词——个性化美颜,而它的核心驱动力,正是深度学习。从“千人一脸”到“千人千面”,美颜SDK走进了一个真正智能的时代。一、美颜SDK,从滤镜到AI的技术跃迁美颜SDK是一类集成在App中,用于图像实时处理和优化
- 通信算法之278:数据链/自组网通信设备--MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码--1.系统指标需求及帧结构设计
秋风战士
无线通信基带处理算法MATLAB仿真软件无线电算法无人机经验分享
MIMO(2T2R)-OFDM系统系列–实际工程应用算法代码第一章:系统指标需求拆解分析第二章:通信系统帧结构设计和OFDM参数设计第三章:通信业务速率设计及理论解调门限第四章:同步序列设计及同步性能仿真验证第五章:数据业务设计及性能仿真验证第六章:信道模型设计第七章:接收关键算法设计及仿真验证第八章:其它待补充本文目录MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码一、实际项目:系
- Badoo×亚矩云手机:社交约会革命的“云端心跳加速剂“
云云321
智能手机网络游戏大数据矩阵
——当全球最大陌生人社交平台遇上云端算力,破解"颜值即正义"困局,重塑真实、高效、安全的下一代社交体验作为月活超4亿的全球陌生人社交巨头,Badoo以"附近的人+动态分享"模式,帮助用户跨越地理与社交圈层建立连接。然而,随着Z世代对"真实社交、深度互动、隐私安全"的需求爆发,Badoo正面临三大核心挑战:颜值内卷与虚假人设:过度依赖照片/视频的展示方式,导致"照骗"泛滥,用户匹配后见面破灭率高达6
- 计算机组成原理知识点汇总(考研用)——第六章:总线
happy19991001
计算机组成原理
计算机组成原理知识点汇总(考研用)——第六章:总线 本文参考于《2021年计算机组成原理考研复习指导》(王道考研),《计算机组成原理》思维导图:文章目录计算机组成原理知识点汇总(考研用)——第六章:总线6.总线6.1总线概述 6.1.1总线基本概念 1.总线的定义 2.总线设备 3.总线特性 4.总线的猝发传输方式 6.1.2总线的分类 1.片内总线 2.系统总线 3.通信总线 6.
- FFmpeg开发笔记(四十四)毕业设计可做的几个拉满颜值的音视频APP
gegey
ffmpeg笔记音视频
合集-FFmpeg开发实战(53)1.FFmpeg开发笔记(一)搭建Linux系统的开发环境2023-04-162.FFmpeg开发笔记(二)搭建Windows系统的开发环境2023-04-293.FFmpeg开发笔记(三)FFmpeg的可执行程序介绍03-094.FFmpeg开发笔记(四)FFmpeg的动态链接库介绍03-105.FFmpeg开发笔记(五)更新MSYS的密钥环03-166.FFm
- React-cli
非常難胖
reactreact-cli
安装
[email protected]全局安装create-react-app-V查看版本create-react-appxxxx_xxx创建项目npmrunstart启动项目目录node_modules//第三方依赖的包public//资源目录favicon.ico//左上角的图标index.html//项目首页模板manifast.json//定义app的图标网址主题颜
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- 跨平台+高颜值+免费,一款牛逼的开源阅读神器!
梦玄狸
开源
在当今数字阅读时代,许多阅读软件要么功能单一,要么界面复杂,难以满足用户的需求。例如,多设备同步阅读进度时,功能常常不稳定;做笔记和标注时,操作又显得繁琐。此外,平台兼容性差、数据同步困难等问题,也严重影响了阅读体验。今天,我要为大家介绍一款革命性的开源阅读工具——Readest,它不仅提供完整的跨平台支持,还具备强大的功能特性,能够帮助用户轻松实现优质的阅读体验。核心优势全平台覆盖,无缝同步Re
- pgsql处理文档类型数据_PostgreSQL数据类型
http://blog.csdn.net/neo_liu0000/article/category/797059第六章数据类型6.1概述PostgreSQL提供了丰富的数据类型。用户可以使用CREATETYPE命令在数据库中创建新的数据类型。PostgreSQL的数据类型被分为四种,分别是基本数据类型、复合数据类型、域和伪类型。基本数据类型是数据库内置的数据类型,包括integer、char、va
- 曼昆《经济学原理》第九版 宏观经济学 第二十六章货币增长与通货膨胀
没有女朋友的程序员
经济学
以下是曼昆《经济学原理》第九版宏观经济学第二十六章**“货币增长与通货膨胀”**的详细讲解,从零基础开始构建知识框架,结合中国实际案例与生活化比喻,帮助小白系统理解核心概念:一、知识框架:通货膨胀的“因果链”1.核心问题:为什么发钱会引发物价上涨?2.关键概念:货币数量论、古典二分法、费雪效应、通货膨胀税3.逻辑链条:货币超发→物价上涨→购买力下降→社会成本4.中国实践:M2增长与通胀压力、房地产
- 【学习】《算法图解》第六章学习笔记:广度优先搜索
自学也学好编程
程序人生
前言《算法图解》第六章为我们介绍了一种基础且强大的图搜索算法——**广度优先搜索(Breadth-FirstSearch,BFS)**。这种算法能够系统地探索图中的节点,常用于解决两类核心问题:一是判断从一个节点到另一个节点是否存在路径;二是在无权图中找到两个节点之间的最短路径。本笔记将深入探讨图的基本概念、BFS的工作原理、其实现方式以及相关的性能分析。一、图(Graph)简介在讨论BFS之前,
- 【学习】《算法图解》第六章学习笔记:广度优先搜索
程序员
前言《算法图解》第六章为我们介绍了一种基础且强大的图搜索算法——广度优先搜索(Breadth-FirstSearch,BFS)。这种算法能够系统地探索图中的节点,常用于解决两类核心问题:一是判断从一个节点到另一个节点是否存在路径;二是在无权图中找到两个节点之间的最短路径。本笔记将深入探讨图的基本概念、BFS的工作原理、其实现方式以及相关的性能分析。一、图(Graph)简介在讨论BFS之前,我们需要
- AI时代下的架构设计:从传统到智能化的技术演进
作者:蓝葛亮发布时间:2025年6月关键词:架构设计、AI原生、微服务、云原生、MLOps文章目录第一章:AI架构设计概述第二章:AI原生应用架构模式第三章:微服务在AI系统中的演进第四章:云原生AI架构实践第五章:MLOps与LLMOps工程化第六章:边缘计算与AI融合架构第七章:数据架构的AI化转型第八章:AI架构安全与治理第九章:性能优化与可扩展性第十章:行业案例与最佳实践第一章:AI架构设
- Potplayer 播放器 - 下载,安装,设置 - Potplayer 用户必看.视频播放器Potplayer
goodfat
音视频
对比市面上常见的视频播放器:Potplayer,VLC,MPV,MPC-HC,MPC-BE,QQ影音,迅雷播放器等等个人觉得Windows电脑上最好用的,最值得推荐的,本地视频播放器,现在依然是Potplayer。给你准备好了:链接:https://pan.quark.cn/s/81356996526a一、Potplayer介绍Potplayer是一款完全免费,颜值高,画质好,无广告,易上手,功能
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交