Java多线程(2)-- 互斥之synchronized、Lock与Java锁

Java 提供了两种锁机制来控制多个线程对共享资源的互斥访问,第一个是 JVM 实现的synchronized,而另一个是 JDK 实现的 ReentrantLock。

一、synchronized

   synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。synchronized的作用主要有三个:(1)确保线程互斥的访问同步代码(2)保证共享变量的修改能够及时可见(3)有效解决重排序问题。从语法上讲,Synchronized总共有三种用法:

 (1)修饰普通方法,锁是当前实例对象;

 (2)修饰静态方法,锁是当前类的Class对象;

 (3)修饰代码块,锁是括号里面的对象。

 (4)修饰类,锁是括号里面的class对象


   原理:

   代码块同步是使用monitorenter和monitorexit指令实现,而方法同步是使用另外一种方式实现的,细节在JVM规范里并没有详细说明,但是方法的同步同样可以使用这两个指令来实现。monitorenter指令是在编译后插入到同步代码块的开始位置,而monitorexit是插入到方法结束处和异常处, JVM要保证每个monitorenter必须有对应的monitorexit与之配对。任何对象都有一个 monitor 与之关联,当一个monitor 被持有后,它将处于锁定状态。线程执行到 monitorenter 指令时,将会尝试获取对象所对应的 monitor 的所有权,即尝试获得对象的锁。

1)同步块

每个对象有一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:

1、如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者。

2、如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1。

3、如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权。

执行monitorexit的线程必须是monitor的所有者:

指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor的所有权。


2)同步方法

方法的同步并没有通过指令monitorenter和monitorexit来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其所在对象的常量池中多了ACC_SYNCHRONIZED标示符。JVM就是根据该标示符来实现方法的同步的:当方法调用时,调用指令将会检查方法的ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取方法所在对象或类对象的monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。其实本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。


同步代码块(同步普通方法类似):

对于以下代码,使用 ExecutorService 执行了两个线程,由于调用的是同一个对象的同步代码块,因此这两个线程会进行同步,当一个线程进入同步语句块时,另一个线程就必须等待。

public class SynchronizedExample {

    public void func1() {

        synchronized (this){

            for (int i = 0;i < 10; i++) {

               System.out.print(i + " ");

            }

        }

    }

}

public static void main(String[] args) {

    SynchronizedExample e1 =new SynchronizedExample();

    ExecutorService executorService =Executors.newCachedThreadPool();

   executorService.execute(() -> e1.func1());

   executorService.execute(() -> e1.func1());

}

0 1 2 3 4 5 6 78 9 0 1 2 3 4 5 6 7 8 9


对于以下代码,两个线程调用了不同对象的同步代码块,因此这两个线程就不需要同步。从输出结果可以看出,两个线程交叉执行。

public static void main(String[] args) {

    SynchronizedExample e1 =new SynchronizedExample();

    SynchronizedExample e2 =new SynchronizedExample();

    ExecutorServiceexecutorService = Executors.newCachedThreadPool();

   executorService.execute(() -> e1.func1());

   executorService.execute(() -> e2.func1());

}

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9


同步类(静态方法类似):

作用于整个类,也就是说两个线程调用同一个类的不同对象上的这种同步语句,也会进行同步。

public class SynchronizedExample {

    public void func2() {

        synchronized(SynchronizedExample.class) {

            for (int i = 0;i < 10; i++) {

               System.out.print(i + " ");

            }

        }

    }

}

public static void main(String[] args) {

    SynchronizedExample e1 =new SynchronizedExample();

    SynchronizedExample e2 =new SynchronizedExample();

    ExecutorServiceexecutorService = Executors.newCachedThreadPool();

   executorService.execute(() -> e1.func2());

    executorService.execute(() ->e2.func2());

}

0 1 2 3 4 5 6 78 9 0 1 2 3 4 5 6 7 8 9


线程安全需要保证几个基本特性:

* 原子性,简单说就是相关操作不会中途被其他线程干扰,一般通过同步机制实现。

* 可见性,是一个线程修改了某个共享变量,其状态能够立即被其他线程知晓,通常被解释为将线程本地状态反映到主内存上,volatile就是负责保证可见性的。

* 有序性,是保证线程内串行语义,避免指令重排等。


   需要同步的场景:

   总结:

   1)局部变量中的基本数据类型(8种)永远是线程安全的。

   2)局部变量中的对象类型只要不会被其他线程访问到,也是线程安全的。

   3)一个对象实例被多个线程同时访问时,他的成员变量就可能是线程不安全的。

   如果一个资源的创建,使用,销毁都在同一个线程内完成,且永远不会脱离该线程的控制,则该资源的使用就是线程安全的。


二、Lock

      我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

 1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

 2)线程执行发生异常,此时JVM会让线程自动释放锁。

 那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

对于“不可抢占”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。

如果我们重新设计一把互斥锁去解决这个问题,那该怎么设计呢?我觉得有三种方案。

1)能够响应中断。synchronized 的问题是,持有锁 A 后,如果尝试获取锁 B 失败,那么线程就进入阻塞状态,一旦发生死锁,就没有任何机会来唤醒阻塞的线程。但如果阻塞状态的线程能够响应中断信号,也就是说当我们给阻塞的线程发送中断信号的时候,能够唤醒它,那它就有机会释放曾经持有的锁 A。这样就破坏了不可抢占条件了。

2)支持超时。如果线程在一段时间之内没有获取到锁,不是进入阻塞状态,而是返回一个错误,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。

3)非阻塞地获取锁。如果尝试获取锁失败,并不进入阻塞状态,而是直接返回,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。

再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

 1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

 2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。


Lock接口:lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。实现类为ReentrantLock。

// 支持中断的API void lockInterruptibly() throws InterruptedException;

// 支持超时的API boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

// 支持非阻塞获取锁的API boolean tryLock();

Lock lock = new ReentrantLock();

lock.lock();

try{

    //处理任务

}catch(Exceptionex){

}finally{

    lock.unlock();   //释放锁

}


Lock lock = new ReentrantLock();

if(lock.tryLock()) {

     try{

         //处理任务

     }catch(Exception ex){

     }finally{

         lock.unlock();   //释放锁

     }

}else {

    //如果不能获取锁,则直接做其他事情

}

lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就是说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

public void method() throws InterruptedException {

   lock.lockInterruptibly();

    try { 

     //.....

    }

    finally {

        lock.unlock();

    } 

}


ReadWriteLock也是一个接口,在它里面只定义了两个方法:

public interface ReadWriteLock {

    /**

     * Returns the lock used for reading.

     */

    Lock readLock();


    /**

     * Returns the lock used for writing.

     */

    Lock writeLock();

}

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作


ReentrantReadWriteLock类实现了ReadWriteLock接口。

读写锁使用方法:

(1) 创建一个ReentrantReadWriteLock对象

private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

(2)抽取读锁和写锁:

private Lock readLock = rwl.readLock();//得到一个可被多个读操作共用的读锁,但它会排斥所有写操作 

private Lock writeLock = rwl.writeLock();//得到一个写锁,它会排斥所有其他的读操作和写操作 

(3) 对所有访问者加读锁

public double getTotalBalance(){ 

    readLock.lock(); 

    try{...}; 

    finally{readLock.unlock();} 

}


对所有修改者加写锁

public void transfer(){ 

    writeLock.lock(); 

    try{...}; 

    finally{writeLock.unlock();} 

不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,申请写锁的线程会一直等待释放读锁。

如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,申请的线程会一直等待释放写锁。


AQS原理:

在java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),内部实现都依赖AbstractQueuedSynchronizer类。

AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第1张图片

红色节点是默认head节点,其实是一个空节点,我觉得可以理解成代表当前持有锁的线程,每当有线程竞争失败,都是插入到队列的尾节点,tail节点始终指向队列中的最后一个元素。

示例:

public abstract class AbstractQueuedSynchronizer extends

   AbstractOwnableSynchronizer implements java.io.Serializable {

    //等待队列的头节点

    private transient volatile Node head;

    //等待队列的尾节点

    private transient volatile Node tail;

    //同步状态

    private volatile int state;

    protected final int getState() { return state;}

    protected final void setState(int newState) { state = newState;}

    ...

}

      队列同步器AQS是用来构建锁或其他同步组件的基础框架,内部使用一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作,其中内部状态state,等待队列的头节点head和尾节点tail,都是通过volatile修饰,保证了多线程之间的可见。

AQS维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。state的访问方式有三种:

getState()

setState()

compareAndSetState()

AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。

以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

每个节点中, 除了存储了当前线程,前后节点的引用以外,还有一个waitStatus变量,用于描述节点当前的状态。多线程并发执行时,队列中会有多个节点存在,这个waitStatus其实代表对应线程的状态:有的线程可能获取锁因为某些原因放弃竞争;有的线程在等待满足条件,满足之后才能执行等等。一共有4中状态:

CANCELLED 取消状态

SIGNAL 等待触发状态

CONDITION 等待条件状态

PROPAGATE 状态需要向后传播

等待队列是FIFO先进先出,只有前一个节点的状态为SIGNAL时,当前节点的线程才能被挂起。


总结来说,Lock和synchronized有以下几点不同:

1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

5)Lock可以提高多个线程进行读操作的效率。


Locksynchronized比较

1. 锁的实现

synchronized 是 JVM 实现的,而ReentrantLock 是 JDK 实现的。

2. 性能

新版本 Java 对synchronized 进行了很多优化,例如自旋锁等,synchronized 与ReentrantLock 大致相同。

3. 等待可中断

当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。

ReentrantLock 可中断,而synchronized 不行。

4. 公平锁

公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁。

synchronized 中的锁是非公平的,ReentrantLock默认情况下也是非公平的,但是也可以是公平的。

5. 锁绑定多个条件

一个 ReentrantLock 可以同时绑定多个Condition 对象。


使用选择

除非需要使用 ReentrantLock 的高级功能,否则优先使用synchronized。这是因为 synchronized 是 JVM 实现的一种锁机制,JVM 原生地支持它,而 ReentrantLock 不是所有的 JDK 版本都支持。并且使用synchronized 不用担心没有释放锁而导致死锁问题,因为 JVM 会确保锁的释放。


锁相关的几个概念:

1)可重入锁

  如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

2)可中断锁

  可中断锁:顾名思义,就是可以相应中断的锁。

  在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

  如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

  在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

3)公平锁

  公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

  非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

  在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

4)读写锁

  读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

  正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

  ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。可以通过readLock()获取读锁,通过writeLock()获取写锁。


三、Java锁

Synchronized代码块是由一对monitorenter/monitorexit指令实现的,Monitor对象是同步的基本实现单元。Java6之前,Monitor的实现完全是依靠操作系统内部的互斥锁,因为需要进行用户态到内核态的切换,所以同步操作是一个无差别的重量级操作。现代的JDK中,JVM对此进行了大刀阔斧的改进,提供了三种不同的锁:偏向锁、轻量级锁和重量级锁,大大改进了其性能。

   java中每个对象都可作为锁,锁有四种级别,按照量级从轻到重分为:无锁、偏向锁、轻量级锁、重量级锁。并且锁只能升级不能降级。轻量级锁是为了在线程交替执行同步块时提高性能,而偏向锁则是在只有一个线程执行同步块时进一步提高性能。

   在讲这三个锁之前,要先清楚自旋和对象头的概念。

   自旋:

   现在假设有这么一个场景:有两个线程A,B在竞争一个锁,假设A拿到了,这个时候B被挂起阻塞,一直等待A释放了锁,B才得到使用权。在操作系统中阻塞和唤醒是一个耗时操作,如果A在很短的时间内就释放了锁,当这个时间与阻塞唤醒比较起来更短的时候,我们将B挂起,其实不是一个最优的选择。

自旋是指某线程需要获取锁,但该锁已经被其他线程占用时,该线程不会被挂起,而是在不断的消耗CPU的时间,不停的试图获取锁。虽然CPU的时间被消耗了,但是比线程下文切换时间要少,这个时候使用自旋是划算的。

基本形式就是通过while循环加上CPU指令级别保证的CAS原子操作来判断某个共享变量内存的值是否被其他线程修改,如果没有修改那么就认为获取到了锁,这个变量需要设置为volatile,否则容易被指令重排引起问题。也即尝试获取锁的线程不会立即阻塞,采用循环的方式去获取锁,好处是减少了上下文切换,缺点是消耗CPU。

自旋锁虽然能避免进入阻塞状态从而减少开销,但是它需要进行忙循环操作占用 CPU 时间,它只适用于共享数据的锁定状态很短的场景。

如果是单核处理器,一般建议不要使用自旋锁。因为只有单个处理器,自旋占用的时间片使得代价很高。

在 JDK 1.6 中引入了自适应的自旋锁。自适应意味着自旋的次数不再固定了,而是由前一次在同一个锁上的自旋次数及锁的拥有者的状态来决定。


对象头:

   HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

   HotSpot虚拟机的对象头(Object Header)包括两部分信息,第一部分用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等,这部分数据的长度在32位和64位的虚拟机中分别为32个和64个Bits,官方称它为“Mark Word”。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第2张图片

锁消除

锁消除是指对于被检测出不可能存在竞争的共享数据的锁进行消除。

锁消除主要是通过逃逸分析来支持,如果堆上的共享数据不可能逃逸出去被其它线程访问到,那么就可以把它们当成私有数据对待,也就可以将它们的锁进行消除。

对于一些看起来没有加锁的代码,其实隐式的加了很多锁。例如下面的字符串拼接代码就隐式加了锁:

public static String concatString(String s1, String s2, String s3){

    return s1 + s2 + s3;

}

String 是一个不可变的类,编译器会对 String 的拼接自动优化。在 JDK 1.5 之前,会转化为 StringBuffer 对象的连续 append() 操作:

public staticString concatString(String s1, String s2, String s3) {

    StringBuffer sb= new StringBuffer();

    sb.append(s1);

    sb.append(s2);

    sb.append(s3);

    return sb.toString();

}

每个 append() 方法中都有一个同步块。虚拟机观察变量 sb,很快就会发现它的动态作用域被限制在 concatString() 方法内部。也就是说,sb 的所有引用永远不会逃逸到 concatString() 方法之外,其他线程无法访问到它,因此可以进行消除。


锁粗化

如果一系列的连续操作都对同一个对象反复加锁和解锁,频繁的加锁操作就会导致性能损耗。

上一节的示例代码中连续的 append() 方法就属于这类情况。如果虚拟机探测到由这样的一串零碎的操作都对同一个对象加锁,将会把加锁的范围扩展(粗化)到整个操作序列的外部。对于上一节的示例代码就是扩展到第一个 append() 操作之前直至最后一个 append() 操作之后,这样只需要加锁一次就可以了。


JDK 1.6 引入了偏向锁和轻量级锁,从而让锁拥有了四个状态:无锁状态(unlocked)、偏向锁状态(biasble)、轻量级锁状态(lightweight locked)和重量级锁状态(inflated)。

偏向锁

偏向锁的思想是偏向于让第一个获取锁对象的线程,这个线程在之后获取该锁就不再需要进行同步操作,甚至连 CAS 操作也不再需要。

当锁对象第一次被线程获得的时候,进入偏向状态,标记为 1 01。同时使用 CAS 操作将线程 ID 记录到 Mark Word 中,如果 CAS 操作成功,这个线程以后每次进入这个锁相关的同步块就不需要再进行任何同步操作。

当有另外一个线程去尝试获取这个锁对象时,偏向状态就宣告结束,此时撤销偏向(Revoke Bias)后恢复到未锁定状态或者轻量级锁状态。

引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令。 不过一旦出现多个线程竞争时必须撤销偏向锁,所以撤销偏向锁消耗的性能必须小于之前节省下来的CAS原子操作的性能消耗,不然就得不偿失了。

当只有一个线程去竞争锁的时候,我们不需要阻塞,也不需要自旋,因为只有一个线程在竞争,我们只要去判断该偏向锁中的ThreadID是否为当前线程即可。如果是就执行同步代码,不是就尝试使用CAS修改ThreadID,修改成功执行同步代码,不成功就将偏向锁升级成轻量锁。JDK 1.6中默认开启偏向锁,可以通过-XX:-UseBiasedLocking来禁用偏向锁。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第3张图片

偏向锁获取过程:

(1)访问Mark Word中偏向锁的标识是否设置成1,锁标志位是否为01——确认为可偏向状态。

(2)如果为可偏向状态,则测试线程ID是否指向当前线程,如果是,进入步骤(5),否则进入步骤(3)。

(3)如果线程ID并未指向当前线程,则通过CAS操作竞争锁。如果竞争成功,则将Mark Word中线程ID设置为当前线程ID,然后执行(5);如果竞争失败,执行(4)。

(4)如果CAS获取偏向锁失败,则表示有竞争。当到达全局安全点(safepoint)时获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码。

(5)执行同步代码。


偏向锁的释放:

偏向锁的撤销在上述第四步骤中有提到。偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。

释放过程:

(1)偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行);

(2)它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态;

(3)撤销偏向锁后恢复到未锁定(标志位为“01”)或轻量级锁(标志位为“00”)的状态。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第4张图片
Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第5张图片

轻量级锁:

“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的。但是,首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用产生的性能消耗。在解释轻量级锁的执行过程之前,先明白一点,轻量级锁所适应的场景是线程交替执行同步块的情况,如果存在同一时间访问同一锁的情况,就会导致轻量级锁膨胀为重量级锁。

获取轻量锁的过程与偏向锁不同,竞争锁的线程首先需要拷贝对象头中的Mark Word到帧栈的锁记录中。拷贝成功后使用CAS操作尝试将对象的Mark Word更新为指向当前线程的指针。如果这个更新动作成功了,那么这个线程就拥有了该对象的锁。如果更新失败,那么意味着有多个线程在竞争。

当竞争线程尝试占用轻量级锁失败多次之后(使用自旋)轻量级锁就会膨胀为重量级锁,重量级线程指针指向竞争线程,竞争线程也会阻塞,等待轻量级线程释放锁后唤醒他。

下图左侧是一个线程的虚拟机栈,其中有一部分称为 Lock Record 的区域,这是在轻量级锁运行过程创建的,用于存放锁对象的 Mark Word。而右侧就是一个锁对象,包含了 Mark Word 和其它信息。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第6张图片

轻量级锁是相对于传统的重量级锁而言,它使用 CAS 操作来避免重量级锁使用互斥量的开销。对于绝大部分的锁,在整个同步周期内都是不存在竞争的,因此也就不需要都使用互斥量进行同步,可以先采用 CAS 操作进行同步,如果 CAS 失败了再改用互斥量进行同步。

当尝试获取一个锁对象时,如果锁对象标记为 0 01,说明锁对象的锁未锁定(unlocked)状态。此时虚拟机在当前线程的虚拟机栈中创建 Lock Record,然后使用 CAS 操作将对象的 Mark Word 更新为 Lock Record 指针。如果 CAS 操作成功了,那么线程就获取了该对象上的锁,并且对象的 Mark Word 的锁标记变为 00,表示该对象处于轻量级锁状态。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第7张图片

如果 CAS 操作失败了,虚拟机首先会检查对象的 Mark Word 是否指向当前线程的虚拟机栈,如果是的话说明当前线程已经拥有了这个锁对象,那就可以直接进入同步块继续执行,否则说明这个锁对象已经被其他线程线程抢占了。如果有两条以上的线程争用同一个锁,那轻量级锁就不再有效,要膨胀为重量级锁。


轻量级锁的加锁过程:

(1)在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝。

(2)拷贝对象头中的Mark Word复制到锁记录中。

(3)拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤(4),否则执行步骤(5)。

(4)如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态。

(5)如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。 而当前线程便尝试使用自旋来获取锁,自旋就是为了不让线程阻塞,而采用循环去获取锁的过程。


轻量级锁的解锁过程:

(1)通过CAS操作尝试把线程中复制的Displaced Mark Word对象替换当前的Mark Word。

(2)如果替换成功,整个同步过程就完成了。

(3)如果替换失败,说明有其他线程尝试过获取该锁(此时锁已膨胀),那就要在释放锁的同时,唤醒被挂起的线程。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第8张图片
Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第9张图片

重量级锁:

重量级锁通过对象内部的监视器(monitor)实现,其中monitor的本质是依赖于底层操作系统的Mutex Lock实现,操作系统实现线程之间的切换需要从用户态到内核态的切换,切换成本非常高。

重量级锁的加锁、解锁过程和轻量级锁差不多,区别是:竞争失败后,线程阻塞,释放锁后,唤醒阻塞的线程,不使用自旋锁,不会那么消耗CPU,所以重量级锁适合用在同步块执行时间长的情况下。

下面是这几种锁的对比:

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第10张图片
详细信息还可参考:https://www.jianshu.com/p/c5058b6fe8e5

死锁

       死锁是两个多个线程之间,由于相互持有对方需要的锁,而永久处于阻塞的状态。死锁通常发生在多个线程同时但以不同的顺序请求同一组锁的时候。

譬如有A、B两个线程,A持有LockA锁且在等待LockB锁,而B持有锁LockB且在等待LockA锁,LockA、LockB陷入互相等待导致谁都无法执行的一种现象。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第11张图片

死锁发生的条件:

* 互斥条件,类似Java中Monitor都是独占的,要么是我用,要么是你用。

* 互斥条件是长期持有的,在使用结束之前,自己不会释放,也不能被其他线程抢占。

* 循环依赖条件,两个或者多个个体之间出现了链条环。


死锁的核心代码示例:

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第12张图片
Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第13张图片
Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第14张图片
Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第15张图片

死锁定位方法:

top命令

在linux环境下,可以通过top命令查看各个进程的cpu使用情况,默认按cpu使用率排序,如果用内存使用率排序,可再使用M命令。

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第16张图片

1、上图中可以看出pid为23344的java进程占用了较多的cpu资源;

2、通过top -Hp 23344可以查看该进程下各个线程的cpu使用情况;

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第17张图片

上图中可以看出pid为25077的线程占了较多的cpu资源,利用jstack命令可以继续查看该线程当前的堆栈状态。


jstack命令

通过top命令定位到cpu占用率较高的线程之后,继续使用jstack pid命令查看当前java进程的堆栈状态

Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第18张图片
Java多线程(2)-- 互斥之synchronized、Lock与Java锁_第19张图片

jstack命令生成的thread dump信息包含了JVM中所有存活的线程,为了分析指定线程,必须找出对应线程的调用栈,应该如何找?

在top命令中,已经获取到了占用cpu资源较高的线程pid,将该pid转成16进制的值,在thread dump中每个线程都有一个nid,找到对应的nid即可;隔段时间再执行一次stack命令获取thread dump,区分两份dump是否有差别,在nid=0x246c的线程调用栈中,发现该线程一直在执行JstackCase类第33行的calculate方法,得到这个信息,就可以检查对应的代码是否有问题。

通过thread dump分析线程状态

除了上述的分析,大多数情况下会基于thead dump分析当前各个线程的运行情况,如是否存在死锁、是否存在一个线程长时间持有锁不放等等。

在dump中,线程一般存在如下几种状态:

1、RUNNABLE,线程处于执行中

2、BLOCKED,线程被阻塞

3、WAITING,线程正在等待

很明显:线程1获取到锁,处于RUNNABLE状态,线程2处于BLOCK状态

1、locked

<0x000000076bf62208>说明线程1对地址为0x000000076bf62208对象进行了加锁;

2、waiting to lock

<0x000000076bf62208> 说明线程2在等待地址为0x000000076bf62208对象上的锁;

3、waiting for

monitor entry [0x000000001e21f000]说明线程1是通过synchronized关键字进入了监视器的临界区,并处于"Entry Set"队列,等待monitor。


避免死锁主要有以下方法:

(1)避免多个锁:如果可能的话,尽量避免使用多个锁,并且只有需要时才持有锁。嵌套的synchronized或者lock非常容易出问题。

(2)加锁顺序:当多个线程需要相同的一些锁但每个线程又按照不同顺序加锁则很容易发生死锁(如上面死锁的例子),如果能确保所有的线程都是按照相同的顺序获得锁则发生死锁的情况就不存在了。

(3)加锁时限:可以在尝试获取锁的时候加一个超时时间,若一个线程没有在给定的时限内成功获得所有需要的锁则会进行回退并释放所有已经获得的锁,然后等待一段随机的时间再重试,这段随机的等待时间让其它线程有机会尝试获取相同的这些锁,并且让该应用在没有获得锁的时候可以继续运行。

(4)死锁检测:死锁检测是一个更好的死锁预防机制,它主要是针对那些不可能实现按序加锁并且锁超时也不可行的场景。

检测方法:

每当一个线程获得了锁,会在线程和锁相关的数据结构中(map、graph等等)将其记下。除此之外,每当有线程请求锁,也需要记录在这个数据结构中。

当一个线程请求锁失败时,这个线程可以遍历锁的关系图看看是否有死锁发生。例如,线程A请求锁7,但是锁7这个时候被线程B持有,这时线程A就可以检查一下线程B是否已经请求了线程A当前所持有的锁。如果线程B确实有这样的请求,那么就是发生了死锁(线程A拥有锁1,请求锁7;线程B拥有锁7,请求锁1)。


那么当检测出死锁时,这些线程该做些什么呢?

一个可行的做法是释放所有锁,回退,并且等待一段随机的时间后重试。

一个更好的方案是给这些线程设置优先级,让一个(或几个)线程回退,剩下的线程就像没发生死锁一样继续保持着它们需要的锁。

你可能感兴趣的:(Java多线程(2)-- 互斥之synchronized、Lock与Java锁)