- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- GraphRAG革命性突破!美国Cedars-Sinai医疗中心揭秘:知识增强大模型如何重塑阿尔茨海默病基因研究与治疗?
DeepSeek-大模型系统教程
人工智能大模型chatgpt语言模型ai大模型学习大模型教程
摘要:随着阿尔茨海默病患者人数不断攀升,Cedars-Sinai医学中心通过知识图谱和AI技术,打造了AlzKB阿尔茨海默病知识库,用以推动新型病因和药物的发现。本文详解这些前沿工具如何结合,赋能专业人士实现高效科研转化,为认知障碍领域带来突破正文据估计,690万65岁及以上的美国人患有阿尔茨海默病。如果没有重大的医学突破,预计到2060年,美国这一数字将上升到1380万,到2050年全球将上升到
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- wps合并重复项并求和_Excel中重复项求和的方法
大房汪少
wps合并重复项并求和
在Excel统计数据时,经常会碰到重复项反复出现,很干扰视线,想要对重复项进行合并并求和,那要如何操作呢?下面,小编跟大家详细讲解Excel合并重复项数据并求和的操作方法。首先打开一个需要处理的Excel表格,比如对下列表格中相同型号的数量合并求和。先鼠标选中A列中所有的型号:A列的数据复制粘贴到到空白的E列中,然后点击“数据”–“删除重复项”,如图所示:在弹出的窗口选择列E,并点”删除重复项”,
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- OpenBayes 一周速览丨OmniGen2「双轨架构」实现文本/图像分工协作,效果直逼GPT-4O
公共资源速递4个公共数据集:ReasonMed医学推理数据集Miriad-5.8M医学问答数据集WebClick网页理解基准数据集OCRBench文本识别基准数据集2个公共模型:MiniCPM4-8BKimi-Dev-72B-GGUF9个公共教程:深度估计*23D生成*3图像生成与处理*4访问官网立即使用:openbayes.com公共数据集ReasonMed医学推理数据集ReasonMed数据集
- docker迁移
kyrie文
dockerjava容器tomcat
docker迁移本人使用的是DockerDesktop和WSL2的结合使用,因此该方法估计只能适用于两者的结合,其他的仅供参考由于Docker和WSL2的内存过大,导致C盘不堪负重,爆红了!!排除一堆没用的垃圾后还是没办法,看着日益增长的ext4.vhdx没办法,只能痛下杀手,由于里面存放有sql等重要的内容,建议是备份备份再备份迁移步骤1.查看WSL版本及其是否启动输入命令(黑窗口管理员或者Po
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- 【如何衡量相机标定结果的精度】相机标定评价函数
王尼莫啊
目标解算数码相机计算机视觉视觉检测
相关博客:【鱼眼+普通相机】相机标定【opencv】图像畸变校正一、简介常用的衡量相机标定结果精度的评价标准:畸变矫正效果:标定过程中会估计畸变系数,畸变矫正的效果可以通过比较矫正前后的图像来评估。如果畸变得到有效矫正,说明标定过程较为成功。重投影误差(ReprojectionError):这是最常用的评估相机标定精度的指标。它指的是在标定图像中检测到的特征点与通过相机参数投影得到的相应世界坐标点
- github 淘金技巧
waterHBO
github
1.效率,搜索,先不管。后面再说。2.分享的话,其实使用默认的分享功能也行。也是后面再说。此app,今天先做到这里。下面我们再聊点其他东西。其实我还想问,这个事情,其他人是否也做了,https://github.com/excalidraw/excalidraw因为这个项目太火了,103Kstar,我估计二次开发的人会很多。如何在github上搜到别人的代码,查看别人的做法。兄弟,你这个问题问到灵
- 机器视觉:ransac算法详解
无水先生
数字图形和图像处理算法计算机视觉
目录一、说明:二、算法步骤三、算法代码四、其它补充一、说明:RANSAC是一种常用的参数估计方法,全称为RandomSampleConsensus(随机抽样一致性)。它通过随机选择数据中的一部分,然后根据这些数据拟合模型,统计模型与其他数据的偏差,最终筛选出符合一定阈值的数据,用于估计参数。RANSAC可以应用于很多领域,如计算机视觉、机器人和地理信息系统等。其优点在于对噪声数据和异常值有很强的鲁
- 38、Seabor的联合图和成对图的绘制【用Python进行AI数据分析进阶教程】
理工男大辉郎
python人工智能数据分析
用Python进行AI数据分析进阶教程38:Seabor的联合图和成对图的绘制关键词:Seaborn、联合图(JointPlot)、成对图(PairPlot)、数据类型、变量关系摘要:本文介绍了Seaborn库中的联合图(JointPlot)和成对图(PairPlot)的绘制方法。联合图用于展示两个变量之间的关系及各自分布,支持散点图、直方图、核密度估计图等多种类型,适用于连续型变量分析,可自定义
- HALCON: HALCON 20.11.0.0 Progress主要新特性
机器视觉001
HALCONHALCON
HALCON:HALCON20.11.0.0Progress主要新特性改进了基于形状的匹配在HALCON20.11中,对基于形状匹配的核心技术进行了改进,尤其是针对低对比度和高噪声的场景。现在可以自动估计更多的参数。这增加了低对比度和高噪声的情况下的可用性、匹配率和鲁棒性在。DotCode解码在HALCON20.11中,数据编码解码器已经扩展为新的编码类型DotCode。这种类型的2D代码基于一个
- 第三届“传智杯”全国大学生IT技能大赛(初赛B组)
START_GAME
实战笔记
第三届“传智杯”全国大学生IT技能大赛(初赛B组)链接:https://www.luogu.com.cn/contest/38442#description也直接洛谷进入———————————————————————————————笔记:前三题不难。卡在第四题(提交了18次才过-_-),测试点二就是过不了。变量创建的位置改一下就过了,非常不明白为什么。虽然最后5题都过了,估计还是凉凉300+。T1
- 【锂电池SOC估计】 Matlab基于BP神经网络的锂电池SOC估计
天天Matlab代码科研顾问
matlab神经网络开发语言
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍摘要:电池荷电状态(StateofCharge,SOC)的精确估计对于电动汽车、储能系统等应用至关重要。传统的SOC估计方法存在精度受限、算法复杂等问题。本文提出了一种基于反向传播(BackPropagation,BP)神经网络的锂电池SO
- python爬取京东图片
通信小小白
python爬虫python爬虫图片
网上的淘宝爬取图片的代码一般都已经不能实际运行了,在查看淘宝网源代码是找不到图片源地址,估计采取了反爬技术。又去京东看了下,发现很容易爬取。根据下面网址构建urlhttps://list.jd.com/list.html?cat=670%2C671%2C1105&go=0https://list.jd.com/list.html?cat=670,671,1105&page=2&sort=sort_
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 随机近似算法:步长序列选择的理论与金融实践
随机近似算法:步长序列选择的理论与金融实践摘要随机近似算法作为统计学习与优化的核心工具,其收敛性与稳定性高度依赖步长序列的设计。本文系统阐述步长序列的理论约束与工程选择策略,并结合金融波动率估计场景,展示算法在动态系统参数估计中的实践价值。1.随机近似算法的数学框架随机近似算法通过随机样本的迭代更新逼近目标参数,其核心迭代式为:θn+1=θn+an(Yn−g(θn))\theta_{n+1}=\t
- gem5-gpu教程 DSENT (Design Space Exploration of Networks Tool) 配合gem5
事橙1999
gem5-gpu硬件架构
概述DSENT是一种建模工具,旨在快速探索电子和新兴的片上光电网络(NoC)的设计空间。它为各种网络组件提供分析和参数化模型,并可在一系列技术假设下移植。给定架构级参数,DSENT从电气和光学构建块分层构建指定的模型,并输出详细的功率和面积估计。版本当前:0.91(2012年6月26日)最新版本或其他信息可在以下网址找到https://sites.google.com/site/mitdsent系
- 核密度估计KDE和概率密度函数PDF(深入浅出)
赵孝正
深度学习数学基础pdfKDE
目录1.和密度估计(KDE)核密度估计的基本原理核密度估计的公式核密度估计的应用Python中的KDE实现示例代码结果解释解释结果总结2.概率密度函数(PDF)概率密度函数(PDF)是怎么工作的:用图画来解释解释这个图:问题解答:总结3.核密度估计(KDE)和概率密度函数(PDF)之间的关系故事开始:第一种方法:概率密度函数(PDF)第二种方法:核密度估计(KDE)总结一下:问题解答:1.和密度估
- .net core 定时任务
香煎三文鱼
C#.netcore.netcore定时任务
这篇文章过来讲个小东西,也是大家在日常开发中也经常需要面临的问题:后台定时任务处理。估计大家看到这句就已经联想到QuartZ等类似第三方类库了,不好意思,后边的事情和它们没有关系。考虑到简单灵活,满足要求就够的编程风格.还是打算自己弄一个.当然这篇文章里不牵扯到具体的持久化,这个需要按照自己的项目需求去配置.关于IHostedService和BackgroundService需要自己百度一下.相关
- specpu2017安装/编译/运行测试总结
So_shine
linux调试工具和性能量化linux
目录前言一、源码镜像获取二、安装三、配置修改四、编译五、运行测试六、结果查看七、遇到的问题前言SPEC是标准性能评估公司(StandardPerformanceEvaluationCorporation)的简称。SPEC是由计算机厂商、系统集成商、大学、研究机构、咨询等多家公司组成的非营利性组织,这个组织的目标是建立、维护一套用于评估计算机系统的标准。SPECCPU测试中,测试系统的处理器、内存子
- specpu2017在arm64环境下的部署/测试
So_shine
specpu性能测试arm64环境部署
目录前言一、源码镜像获取二、安装三、配置修改四、编译五、运行测试六、结果查看七、遇到的问题前言SPEC是标准性能评估公司(StandardPerformanceEvaluationCorporation)的简称。SPEC是由计算机厂商、系统集成商、大学、研究机构、咨询等多家公司组成的非营利性组织,这个组织的目标是建立、维护一套用于评估计算机系统的标准。SPECCPU测试中,测试系统的处理器、内存子
- 机器学习5——非参数估计
平和男人杨争争
山东大学机器学习期末复习机器学习概率论算法
非参数估计在参数估计中我们已经提到,想要估计后验概率P(ωi∣x)=p(x∣ωi)p(ωi)p(x)P\left(\omega_i\midx\right)=\frac{p\left(x\mid\omega_i\right)p\left(\omega_i\right)}{p(x)}P(ωi∣x)=p(x)p(x∣ωi)p(ωi),就需要估计类条件概率p(x∣ωi)p\left(x\mid\omega
- 机器学习4——参数估计之贝叶斯估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能
贝叶斯估计问题建模:后验概率公式:P(ωi∣x,D)=P(x∣ωi,Di)P(ωi)∑j=1cP(x∣ωj,Dj)P(ωj)P\left(\omega_i\mid\mathbf{x},\mathcal{D}\right)=\frac{P\left(\mathbf{x}\mid\omega_i,\mathcal{D}_i\right)P\left(\omega_i\right)}{\sum_{j=1
- 机器学习3——参数估计之极大似然估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能算法
参数估计问题背景:P(ωi∣x)=p(x∣ωi)P(ωi)p(x)p(x)=∑j=1cp(x∣ωj)P(ωj)\begin{aligned}&P\left(\omega_i\mid\mathbf{x}\right)=\frac{p\left(\mathbf{x}\mid\omega_i\right)P\left(\omega_i\right)}{p(\mathbf{x})}\\&p(\mathbf
- 高通手机跑AI系列之——3D姿势估计
伊利丹~怒风
Qualcomm智能手机AI编程armpython人工智能
目录环境准备手机软件算法Demo代码功能分析关键模块解析示例代码代码效果环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key