ggpubr-专为学术绘图而生(二)

作者:白介素2
相关阅读:
ggpubr-专为学术绘图而生(二)
ggstatsplot-专为学术绘图而生(一)
R语言生存分析-02-ggforest
R语言生存分析-01
生存曲线
R语言GEO数据挖掘01-数据下载及提取表达矩阵
R语言GEO数据挖掘02-解决GEO数据中的多个探针对应一个基因
R语言GEO数据挖掘03-limma分析差异基因
R语言GEO数据挖掘04-功能富集分析

如果没有时间精力学习代码,推荐了解:零代码数据挖掘课程

ggpubr-专为学术绘图而生(二)

由Hadley Wickham创建的ggplot2非常好用的可视化包了,但是由ggplot2绘制的图形通常不能直接用于发表,还需要经过一定程度的编辑,对于不少那么会编程的研究人员而言可能并不是特别友好。
因此,ggpubr应运而生,它提供了简单易用的函数,用于绘制定制的高质量图,可以直接用于发表。
以下演示官方教程:

Sys.setlocale('LC_ALL','C')
library(ggpubr)
set.seed(1234)
wdata = data.frame(
   sex = factor(rep(c("F", "M"), each=200)),
   weight = c(rnorm(200, 55), rnorm(200, 58)))
dim(wdata)
head(wdata, 4)
#>   sex   weight
#> 1   F 53.79293
#> 2   F 55.27743
#> 3   F 56.08444
#> 4   F 52.65430

density plot-ggdensity

color设置轮廓颜色,fill填充颜色设置
palette 颜色设置

ggdensity(wdata, x = "weight",
   add = "mean", rug = TRUE,
   color = "sex",fill = "sex",
   palette = c("#00AFBB", "#E7B800"))
ggpubr-专为学术绘图而生(二)_第1张图片
image.png

频数分布图

gghistogram

gghistogram(wdata, x = "weight",
   add = "mean", rug = TRUE,
   color = "sex", fill = "sex",
   palette = c("#00AFBB", "#E7B800"))
ggpubr-专为学术绘图而生(二)_第2张图片
image.png

箱线图与小提琴图

# Load data
data("ToothGrowth")
df <- ToothGrowth
head(df, 4)
#>    len supp dose
#> 1  4.2   VC  0.5
#> 2 11.5   VC  0.5
#> 3  7.3   VC  0.5
#> 4  5.8   VC  0.5
p <- ggboxplot(df, x = "dose", y = "len",
                color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
                add = "jitter", shape = "dose")
p
ggpubr-专为学术绘图而生(二)_第3张图片
image.png

my_comparisons:指定比较方式和Pvaue
stat_compare_means增加global pvalue

# Add p-values comparing groups
 # Specify the comparisons you want
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
p + stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
  stat_compare_means(label.y = 50)            
ggpubr-专为学术绘图而生(二)_第4张图片
image.png

含有boxplot的小提琴图-ggviolin

label="p.signif"以星号展示pvalue
add="boxplot"在小提琴中增加箱线图

ggviolin(df, x = "dose", y = "len", fill = "dose",
         palette = c("#00AFBB", "#E7B800", "#FC4E07"),
         add = "boxplot", add.params = list(fill = "white"))+
  stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ # Add significance levels
  stat_compare_means(label.y = 50)        
ggpubr-专为学术绘图而生(二)_第5张图片
image.png

柱状图

data("mtcars")
dfm <- mtcars
# 将cyl转换为因子
dfm$cyl <- as.factor(dfm$cyl)
# Add the name colums
dfm$name <- rownames(dfm)
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "cyl")])
#>                                name    wt  mpg cyl
#> Mazda RX4                 Mazda RX4 2.620 21.0   6
#> Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0   6
#> Datsun 710               Datsun 710 2.320 22.8   4
#> Hornet 4 Drive       Hornet 4 Drive 3.215 21.4   6
#> Hornet Sportabout Hornet Sportabout 3.440 18.7   8
#> Valiant                     Valiant 3.460 18.1   6

对barplot排序

按颜色填充时,并不会按分组来排序,只会进行整体排序

ggbarplot(dfm, x = "name", y = "mpg",
          fill = "cyl",               # 按cyl填充颜色
          color = "white",            # 柱子的边界颜色设置
          palette = "jco",            # jco杂志的颜色板
          sort.val = "desc",          # 降序排列
          sort.by.groups = FALSE,     # 不按分组排序
          x.text.angle = 90           # x轴字体旋转90度
          )
ggpubr-专为学术绘图而生(二)_第6张图片
image.png

按分组降序排列

sort.by.groups=TRUE 参数
这个比较适用于绘制GO的富集情况

ggbarplot(dfm, x = "name", y = "mpg",
          fill = "cyl",               # change fill color by cyl
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "asc",           # Sort the value in dscending order
          sort.by.groups = TRUE,      # 按分组内进行排序
          x.text.angle = 90           # Rotate vertically x axis texts
          )
ggpubr-专为学术绘图而生(二)_第7张图片
image.png

偏差图-deviation plot

deviation plot会展示定量数值偏差一个参考值的,相当于对数据进行中心化的处理
以下绘制mpg的z-score,这个过程比较简单,换上自己的数据计算即可


#计算mpg的zscore
dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
#按zscore分为high, low两组
dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"), 
                     levels = c("low", "high"))
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])
#>                                name    wt  mpg      mpg_z mpg_grp cyl
#> Mazda RX4                 Mazda RX4 2.620 21.0  0.1508848    high   6
#> Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0  0.1508848    high   6
#> Datsun 710               Datsun 710 2.320 22.8  0.4495434    high   4
#> Hornet 4 Drive       Hornet 4 Drive 3.215 21.4  0.2172534    high   6
#> Hornet Sportabout Hornet Sportabout 3.440 18.7 -0.2307345     low   8
#> Valiant                     Valiant 3.460 18.1 -0.3302874     low   6

创建一个根据mpg的值排序的barplot

ggbarplot(dfm, x = "name", y = "mpg_z",
          fill = "mpg_grp",           # 根据mpg值的高低填充
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "asc",           # 升序排列
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90,          # Rotate vertically x axis texts
          ylab = "MPG z-score",       # y轴名称
          xlab = FALSE,               #x轴名称
          legend.title = "MPG Group"  # 图注名称
          )
ggpubr-专为学术绘图而生(二)_第8张图片
image.png

旋转图形

ggtheme参数设置主题
rotate=TRUE参数设置图形旋转

ggbarplot(dfm, x = "name", y = "mpg_z",
          fill = "mpg_grp",           # change fill color by mpg_level
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "desc",          # Sort the value in descending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90,          # Rotate vertically x axis texts
          ylab = "MPG z-score",
          legend.title = "MPG Group",
          rotate = TRUE,
          ggtheme = theme_minimal()
          )
ggpubr-专为学术绘图而生(二)_第9张图片
image.png

点图

Lollipop chart-棒棒糖图

棒棒糖图比较适用于有大量值需要可视化的情况
ggdotchart函数
add="segments"增加从0到点的棒子

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "ascending",                        # 升序排列
           add = "segments",                             # 增加棒棒
           ggtheme = theme_pubr()                        # ggplot2 theme
           )
ggpubr-专为学术绘图而生(二)_第10张图片
image.png

1.降序 sorting = “descending”.
2.垂直旋转 rotate = TRUE.
3.按分组排序 group = “cyl”.
4.改变点的大小,dot.soze=6.

  1. mpg值作为标签 label = “mpg” or label = round(dfm$mpg).
ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # 按分组改变颜色
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # 颜色
           sorting = "descending",                       # 降序
           add = "segments",                             # 增加棒棒
           rotate = TRUE,                                # 旋转
           group = "cyl",                                # 按分组排序
           dot.size = 6,                                 # 调整点大小
           label = round(dfm$mpg),                      # 增加值作为标签 
           font.label = list(color = "white", size = 9, 
                             vjust = 0.5),               # 调整标签
           ggtheme = theme_pubr()                        # 主题
           )
ggpubr-专为学术绘图而生(二)_第11张图片
image.png

Deviation graph

Use y = “mpg_z” 计算zscore
改变棒棒的颜色和大小 add.params = list(color = “lightgray”, size = 2)

ggdotchart(dfm, x = "name", y = "mpg_z",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           add.params = list(color = "lightgray", size = 2), # Change segment color and size
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg_z,1),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9, 
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
           )+
  geom_hline(yintercept = 0, linetype = 2, color = "lightgray")
ggpubr-专为学术绘图而生(二)_第12张图片
image.png

Cleveland 点图

文字颜色也按分组调整 y.text.col=TRUE

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           rotate = TRUE,                                # Rotate vertically
           dot.size = 2,                                 # Large dot size
           y.text.col = TRUE,                            # y轴文字的颜色 
           ggtheme = theme_pubr()                        # ggplot2 theme
           )+
  theme_cleveland()             
ggpubr-专为学术绘图而生(二)_第13张图片
image.png

用简单的函数即可对图形进行高度的定制,熟悉这些参数,然后调整自己的数据格式,绘制各种高级的图,R真是包罗万象
参考资料

本期内容就到这里,我是白介素2,下期再见

你可能感兴趣的:(ggpubr-专为学术绘图而生(二))