C++ 实现一个复数类

要求

实现⼀个复数类 ComplexComplex 类包括两个 double 类型的成员 realimage ,分别表示复数的实部和虚部。

Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。

重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:

 -1.1 2.0
 +0 -4.5

重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号

(-1.1+2.0i)
 (0-4.5i)

每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。

输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号

样例输⼊

-1.1 2.0
 0 -4.5 

样例输出

(-1.1+2i) (0-4.5i)
(-1.1-2.5i)
(-1.1+6.5i)
(9+4.95i)
(-0.444444-0.244444i)

提示

需要注意,复数的四则运算定义如下所示:

  • 加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i
  • 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)(c+di)=(ac)+(bd)i
  • 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(acbd)+(bc+ad)i
  • 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bcad)/(c2+d2)]i

两个流操作运算符必须重载为 Complex 类的友元函数

此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:

ostream os;
os.setf(std::ios::showpos);
os << 12;

输出内容会是 +12

⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:

os.unsetf(std::ios::showpos);

即可恢复默认的设置(不输出额外的正号)

代码实现

#include 
using namespace std;

const double EPISON = 1e-7;
class Complex
{
     
private:
  	double real;
  	double image;
public:
  	Complex(const Complex& complex) :real{
      complex.real }, image{
      complex.image } {
     

  	}
  	Complex(double Real=0, double Image=0) :real{
      Real }, image{
      Image } {
     

  	}
  	//TODO
    Complex operator+(const Complex c) {
     
        return Complex(this->real + c.real, this->image + c.image);
    }
    
    Complex operator-(const Complex c) {
     
        return Complex(this->real - c.real, this->image - c.image);
    }
    
    Complex operator*(const Complex c) {
     
        double _real = this->real * c.real - this->image * c.image;
        double _image = this->image * c.real + this->real * c.image;
        return Complex(_real, _image);
    }
    
    Complex operator/(const Complex c) {
     
        double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
        double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
        return Complex(_real, _image);
    }
    friend istream &operator>>(istream &in, Complex &c);
    friend ostream &operator<<(ostream &out, const Complex &c);
};

//重载>>
istream &operator>>(istream &in, Complex &c) {
     
    in >> c.real >> c.image;
    return in;
}

//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
     
    out << "(";
    //判断实部是否为正数或0
    if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
    out << c.real;
    out.setf(std::ios::showpos);
    out << c.image;
    out << "i)";
    return out;
}

int main() {
     
  	Complex z1, z2;
  	cin >> z1;
  	cin >> z2;
  	cout << z1 << " " << z2 << endl;
  	cout << z1 + z2 << endl;
  	cout << z1 - z2 << endl;
  	cout << z1*z2 << endl;
  	cout << z1 / z2 << endl;
  	return 0;
}

你可能感兴趣的:(C/C++,c++)