VQ(Vector Quantization)是一个常用的压缩技术,本文主要回顾:
1)VQ原理
2)基于VQ的说话人识别(SR,speaker recognition)技术
〇、分类问题
说话人识别其实也是一个分类问题:
说话人识别技术,主要有这几大类方法:
模板匹配方法
这类方法比较成熟,主要原理:特征提取、模板训练、匹配。典型的有:动态时间规整DTW,矢量量化VQ等。
DTW利用动态规划的思想,但也有不足:1)过分依赖VAD技术;2)没有充分利用语音的时序动态特性,所以被HMM取代也就容易理解了。
VQ算法是数据压缩的方法。码本简历、码字搜索是两个基本问题,码本简历是从大量信号样本中训练出比较好的码书,码字搜索是找到一个和输入最匹配的码字,该方法简单,对小系统、差别明显的声音较合适。
基于统计模型的分类方法
该类方法本质仍是模式识别系统,都需要提取特征,然后训练分类器,最后分类决策,典型框架:
常用的模型有:GMM、HMM、SVM、ANN、DNN或者各种联合模型等。
GMM基本框架:
类似的还有GMM-UBM(Universal background model)算法,其与GMM的区别在于:对L类整体样本训练一个大的GMM,而不像GMM对每一类训练一个GMM模型。SVM的话MFCC作为特征,每一帧作为一个样本,可以借助VAD删除无效音频段,直接训练分类。近年来也有利用稀疏表达的方法:
2 原理
Vector Quantization 这项技术广泛地用在信号处理以及数据压缩等领域。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。
Vector Quantization 这个名字听起来有些玄乎,其实它本身并没有这么高深。大家都知道,模拟信号是连续的值,而计算机只能处理离散的数字信号,在将模拟信号转换为数字信号的时候,我们可以用区间内的某一个值去代替着一个区间,比如,[0, 1) 上的所有值变为 0 ,[1, 2) 上的所有值变成 1 ,如此类推。其这就是一个 VQ 的过程。一个比较正式一点的定义是:VQ 是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。
一个典型的例子就是图像的编码。最简单的情况,考虑一个灰度图片,0 为黑色,1 为白色,每个像素的值为 [0, 1] 上的一个实数。现在要把它编码为 256 阶的灰阶图片,一个最简单的做法就是将每一个像素值 x 映射为一个整数 floor(x255) 。当然,原始的数据空间也并不以一定要是连续的。比如,你现在想要把压缩这个图片,每个像素只使用 4 bit (而不是原来的 8 bit)来存储,因此,要将原来的 [0, 255] 区间上的整数值用 [0, 15] 上的整数值来进行编码,一个简单的映射方案是 x15/255 。
不过这样的映射方案颇有些 Naive ,虽然能减少颜色数量起到压缩的效果,但是如果原来的颜色并不是均匀分布的,那么的出来的图片质量可能并不是很好。例如,如果一个 256 阶灰阶图片完全由 0 和 13 两种颜色组成,那么通过上面的映射就会得到一个全黑的图片,因为两个颜色全都被映射到 0 了。一个更好的做法是结合聚类来选取代表性的点。
实际做法就是:将每个像素点当作一个数据,跑一下 K-means ,得到 k 个 centroids ,然后用这些 centroids 的像素值来代替对应的 cluster 里的所有点的像素值。对于彩色图片来说,也可以用同样的方法来做,例如 RGB 三色的图片,每一个像素被当作是一个 3 维向量空间中的点。
17 / 18
% Demo script that generates all graphics in the report and demonstrates our results.
[s6 fs6] = wavread('s6.wav');
[s1 fs1] = wavread('s1.wav');
%Question 2
disp('> Question 2:画出原始语音波形');
t = 0:1/fs1:(length(s1) - 1)/fs1;
plot(t, s1), axis([0, (length(s1) - 1)/fs1 -0.4 0.5]);
title('原始语音s1的波形');
xlabel('时间/s');
ylabel('幅度')
pause
close all
%Question 3 (linear)
disp('> Question 3: 画出线性谱');
M = 100;%当前帧数
N = 256;%帧长
frames = blockFrames(s1, fs1, M, N);%分帧
t = N / 2;
tm = length(s1) / fs1;
subplot(121);
imagesc([0 tm], [0 fs1/2], abs(frames(1:t, :)).^2), axis xy;
title('能量谱(M = 100, N = 256)');
xlabel('时间/s');
ylabel('频率/Hz');
colorbar;
%Question 3 (logarithmic)
disp('> Question 3: 画出对数谱');
subplot(122);
imagesc([0 tm], [0 fs1/2], 20 * log10(abs(frames(1:t, :)).^2)), axis xy;
title('对数能量谱(M = 100, N = 256)');
xlabel('时间/s');
ylabel('频率/Hz');
colorbar;
D=get(gcf,'Position');
set(gcf,'Position',round([D(1)*.5 D(2)*.5 D(3)*2 D(4)*1.3]))
pause
close all
%Question 4
disp('> Question 4: 画出不同帧长语谱图');
lN = [128 256 512];
u=220;
for i = 1:length(lN)
N = lN(i);
M = round(N / 3);
frames = blockFrames(s1, fs1, M, N);
t = N / 2;
temp = size(frames);
nbframes = temp(2);
u=u+1;
subplot(u)
imagesc([0 tm], [0 fs1/2], 20 * log10(abs(frames(1:t, :)).^2)), axis xy;
title(sprintf('能量对数谱(第 = %i帧, 帧长 = %i, 帧数 = %i)', M, N, nbframes));
xlabel('时间/s');
ylabel('频率/Hz');
colorbar
end
D=get(gcf,'Position');
set(gcf,'Position',round([D(1)*.5 D(2)*.5 D(3)*1.5 D(4)*1.5]))
pause
close all
%Question 5
disp('> Question 5: Mel空间');
plot(linspace(0, (fs1/2), 129), (melfb(20, 256, fs1))');
title('Mel滤波');
xlabel('频率/Hz');
pause
close all
%Question 6
disp('> Question 6: 修正谱');
M = 100;
N = 256;
frames = blockFrames(s1, fs1, M, N);
n2 = 1 + floor(N / 2);
m = melfb(20, N, fs1);
z = m * abs(frames(1:n2, :)).^2;
t = N / 2;
tm = length(s1) / fs1;
subplot(121)
imagesc([0 tm], [0 fs1/2], abs(frames(1:n2, :)).^2), axis xy;
title('原始能量谱');
xlabel('时间/s');
ylabel('频率/Hz');
colorbar;
subplot(122)
imagesc([0 tm], [0 20], z), axis xy;
title('通过mel倒谱修正后的能量谱');
xlabel('时间/s');
ylabel('滤波器数目');
colorbar;
D=get(gcf,'Position');
set(gcf,'Position',[0 D(2) D(3)*2 D(4)])
pause
close all
%Question 7
disp('> Question 7: 2D plot of accustic vectors');
c1 = mfcc(s1, fs1);
c2 = mfcc(s2, fs2);
plot(c1(5, :), c1(6, :), 'or');
hold on;
plot(c2(5, :), c2(6, :), 'xb');
xlabel('5th Dimension');
ylabel('6th Dimension');
legend('说话人1', '说话人2');
title('2D plot of accoustic vectors');
pause
close all
%Question 8
disp('> Question 8: 画出已训练好的VQ码本')
d1 = vqlbg(c1,16);
d2 = vqlbg(c2,16);
plot(c1(5, :), c1(6, :), 'xr')
hold on
完整代码或者代写添加QQ 1564658423
往期回顾>>>>>>
【特征提取】基于matlab小波变换的音频水印嵌入提取【含Matlab源码 053期】
【语音处理】基于matlab GUI语音信号处理【含Matlab源码 290期】
【语音采集】基于matlab GUI语音信号采集【含Matlab源码 291期】
【语音调制】基于matlab GUI语音幅度调制【含Matlab源码 292期】
【语音合成】基于matlab GUI语音合成【含Matlab源码 293期】
【语音加密】基于matlab GUI语音信号加密解密【含Matlab源码 295期】
【语音增强】基于matlab小波变换的语音增强【含Matlab源码 296期】
【语音识别】基于matlab GUI语音基频识别【含Matlab源码 294期】
【语音增强】基于matlab GUI维纳滤波之语音增强【含Matlab源码 298期】
【语音处理】基于matlab GUI语音信号处理【含Matlab源码 299期】
【信号处理】基于matlab的语音信号频谱分析仪【含Matlab源码 325期】
【调制信号】基于matlab GUI数字调制信号仿真【含Matlab源码 336期】
【情感识别】基于matlab BP神经网络的语音情感识别【含Matlab源码 349期】
【语音隐写】基于matlab小波变换的量化音频数字水印【含Matlab源码 351期】
【特征提取】基于matlab音频水印嵌入与提取【含Matlab源码 350期】
【语音去噪】基于matlab低通和自适应滤波去噪【含Matlab源码 352期】
【情感识别】基于matlab GUI语音情感分类识别【含Matlab源码 354期】
【基础处理】基于matlab语音信号的预处理【含Matlab源码 364期】
【语音识别】基于matlab 傅立叶变换0-9的数字语音识别【含Matlab源码 384期】
【语音识别】基于matlab GUI DTW的0-9数字语音识别【含Matlab源码 385期】
【语音播放】基于matlab GUI MP3设计【含Matlab源码 425期】
【语音处理】基于人耳掩蔽效应的语音增强算法信噪比计算【含Matlab源码 428期】
【语音去噪】基于matlab谱减法去噪【含Matlab源码 429期】
【语音识别】基于matlab带动量项的BP神经网络语音识别【含Matlab源码 430期】
【语音隐写】基于matlab LSB语音隐藏【含Matlab源码 431期】
【语音识别】基于matlab男女声识别【含Matlab源码 452期】
【语音处理】基于matlab语音加噪和降噪处理【含Matlab源码 473期】
【语音去噪】基于matlab最小二乘法(LMS)自适应滤波器【含Matlab源码 481期】
【语音增强】基于matlab谱减法、最小均方和维纳滤波语音增强【含Matlab源码 482期】
【通信】基于matlab GUI数字频带(ASK、PSK、QAM)调制仿真 【含Matlab源码 483期】
【信号处理】基于matlab心电信号ECG滤波处理【含Matlab源码 484期】
【语音播报】基于matlab语音播报【含Matlab源码 507期】
【信号处理】基于matlab小波变换脑电信号特征提取【含Matlab源码 511期】
【语音处理】基于matlab GUI双音多频(DTMF)信号检测【含Matlab源码 512期】
【语音隐写】基于matlab LSB实现语音信号的数字水印【含Matlab源码 513期】
【语音增强】基于matlab匹配滤波器的语音识别【含Matlab源码 514期】
【语音处理】基于matlab GUI语音时域频域频谱图分析【含Matlab源码 527期】
【语音去噪】基于matlab LMS、RLS算法语音去噪【含Matlab源码 528期】
【语音去噪】基于matlab LMS谱减法语音去噪【含Matlab源码 529期】
【语音去噪】基于matlab 软阈值、硬阈值、折中阈值语音去噪【含Matlab源码 530期】
【语音识别】基于matlab特定人的语音识别分辨【含Matlab源码 534期】
【语音去噪】基于matlab小波软阈值语音降噪【含Matlab源码 531期】
【语音去噪】基于matlab小波硬阈值语音降噪【含Matlab源码 532期】
【语音识别】基于matlab MFCC和SVM的特定人性别识别【含Matlab源码 533期】
【语音识别】基于MFCC的GMM语音识别【含Matlab源码 535期】