307. 区域和检索 - 数组可修改
public class NumArray {
private interface Merger {
E merge(E a, E b);
}
private class SegmentTree {
private E[] tree;
private E[] data;
private Merger merger;
public SegmentTree(E[] arr, Merger merger){
this.merger = merger;
data = (E[])new Object[arr.length];
for(int i = 0 ; i < arr.length ; i ++)
data[i] = arr[i];
tree = (E[])new Object[4 * arr.length];
buildSegmentTree(0, 0, arr.length - 1);
}
// 在treeIndex的位置创建表示区间[l...r]的线段树
private void buildSegmentTree(int treeIndex, int l, int r){
if(l == r){
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
// int mid = (l + r) / 2;
int mid = l + (r - l) / 2;
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public int getSize(){
return data.length;
}
public E get(int index){
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal.");
return data[index];
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index){
return 2*index + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index){
return 2*index + 2;
}
// 返回区间[queryL, queryR]的值
public E query(int queryL, int queryR){
if(queryL < 0 || queryL >= data.length ||
queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0, data.length - 1, queryL, queryR);
}
// 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
private E query(int treeIndex, int l, int r, int queryL, int queryR){
if(l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(queryL >= mid + 1)
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
else if(queryR <= mid)
return query(leftTreeIndex, l, mid, queryL, queryR);
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
// 将index位置的值,更新为e
public void set(int index, E e){
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal");
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
// 在以treeIndex为根的线段树中更新index的值为e
private void set(int treeIndex, int l, int r, int index, E e){
if(l == r){
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(index >= mid + 1)
set(rightTreeIndex, mid + 1, r, index, e);
else // index <= mid
set(leftTreeIndex, l, mid, index, e);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append('[');
for(int i = 0 ; i < tree.length ; i ++){
if(tree[i] != null)
res.append(tree[i]);
else
res.append("null");
if(i != tree.length - 1)
res.append(", ");
}
res.append(']');
return res.toString();
}
}
private SegmentTree tree;
public NumArray(int[] nums) {
if (nums.length > 0) {
Integer[] data = new Integer[nums.length];
for (int i = 0; i < nums.length; i++) {
data[i] = nums[i];
}
tree = new SegmentTree<>(data, (a, b) -> a + b);
}
}
public int sumRange(int i, int j) {
return tree.query(i, j);
}
public void update(int index, int val) {
tree.set(index, val);
}
}
public class NumArray {
private int[] data;
private int[] sum;
public NumArray(int[] nums) {
data = new int[nums.length];
for(int i = 0 ; i < nums.length ; i ++)
data[i] = nums[i];
sum = new int[nums.length + 1];
sum[0] = 0;
for(int i = 1 ; i <= nums.length ; i ++)
sum[i] = sum[i - 1] + nums[i - 1];
}
public int sumRange(int i, int j) {
return sum[j + 1] - sum[i];
}
public void update(int index, int val) {
data[index] = val;
for(int i = index + 1 ; i < sum.length ; i ++)
sum[i] = sum[i - 1] + data[i - 1];
}
}