这部分是PART III和PART IV。
Neuroimage Reconstruction and Synthesis(神经图像重建与合成) | 概要 |
---|---|
1.Isotropic MRI Super-Resolution Reconstruction with Multi-scale Gradient Field Prior 具有多尺度梯度场先验的各向同性MRI超分辨率重建 |
|
2.A Two-Stage Multi-loss Super-Resolution Network for Arterial Spin Labeling Magnetic Resonance Imaging 用于动脉自旋标记磁共振成像的两阶段多损失超分辨率网络 |
|
3.Model Learning: Primal Dual Networks for Fast MR Imaging 模型学习:用于快速MR成像的原始双网络 |
|
4.Model-Based Convolutional De-Aliasing Network Learning for Parallel MR Imaging 基于模型的卷积去混叠网络学习用于并行MR成像 |
|
5.Joint Reconstruction of PET + Parallel-MRI in a Bayesian Coupled-Dictionary MRF Framework 贝叶斯耦合字典MRF框架中PET +并行MRI的联合重建 |
|
6.Deep Learning Based Framework for Direct Reconstruction of PET Images 基于深度学习的PET图像直接重建框架 |
|
7.Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction 非均匀变异网络:深度学习以加速非均匀MR图像重建 |
|
8.Reconstruction of Isotropic High-Resolution MR Image from Multiple Anisotropic Scans Using Sparse Fidelity Loss and Adversarial Regularization 使用稀疏保真度损失和对抗性正则化通过多次各向异性扫描重建各向同性高分辨率MR图像 |
|
9.Single Image Based Reconstruction of High Field-Like MR Images 基于单图像的高场像MR图像重建 |
|
10.Deep Gated Convolutional Neural Network for QSM Background Field Removal 用于QSM背景场去除的深门控卷积神经网络 |
|
11.RinQ Fingerprinting: Recurrence-Informed Quantile Networks for Magnetic Resonance Fingerprinting RinQ指纹:用于磁共振指纹的递归信息分位数网络 |
|
12.RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting RCA-U-Net:残留通道注意U-Net,用于磁共振指纹图中的快速组织定量 |
|
13.GANReDL: Medical Image Enhancement Using a Generative Adversarial Network with Real-Order Derivative Induced Loss Functions GANReDL:使用具有实阶导数诱导损失函数的生成对抗网络增强医学图像 |
|
14.Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks 使用自动编码的生成对抗网络生成3D脑MRI |
|
15.Semi-supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control 半监督VAE-GAN用于样本外检测的MRI质量控制 |
|
16.Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages 具有不完整的多模式神经图像的脑疾病诊断的疾病图像特定生成对抗网络 |
|
17.Predicting the Evolution of White Matter Hyperintensities in Brain MRI Using Generative Adversarial Networks and Irregularity Map 使用生成的对抗网络和不规则图预测大脑MRI中白色物质高强度的演变 |
|
18.CoCa-GAN: Common-Feature-Learning-Based Context-Aware Generative Adversarial Network for Glioma Grading CoCa-GAN:用于胶质瘤分级的基于共同特征学习的上下文感知生成对抗网络 |
|
19.Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression 退化对抗性NeuroImage网络:生成模仿疾病进展的图像 |
Neuroimage Segmentation(神经图像分割) | 概要 |
---|---|
20.Scribble-Based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation 基于涂抹的分层弱监督学习用于脑肿瘤分割 |
|
21.3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI 用于MRI中实时脑肿瘤分割的3D扩张多纤维网络 |
|
22.Refined Segmentation R-CNN: A Two-Stage Convolutional Neural Network for Punctate White Matter Lesion Segmentation in Preterm Infants 精细分割R-CNN:两阶段卷积神经网络,用于早产儿点状白质病变分割 |
|
23.VoteNet: A Deep Learning Label Fusion Method for Multi-atlas Segmentation VoteNet:用于多图集细分的深度学习标签融合方法 |
|
24.Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning 通过注意表征学习弱监督脑病变分割 |
|
25.Scalable Neural Architecture Search for 3D Medical Image Segmentation 用于3D医学图像分割的可扩展神经体系结构搜索 |
|
26.Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation from Multimodal Unpaired Images 统一注意力生成对抗网络,用于从多模式不成对图像进行脑肿瘤分割 |
|
27.High Resolution Medical Image Segmentation Using Data-Swapping Method 使用数据交换方法的高分辨率医学图像分割 |
|
28.X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-Range Dependencies X-Net:基于深度可分离卷积和远距离依赖性的脑卒中病变分割 |
|
29.Multi-view Semi-supervised 3D Whole Brain Segmentation with a Self-ensemble Network 具有自集成网络的多视图半监督3D全脑分割 |
|
30.CLCI-Net: Cross-Level Fusion and Context Inference Networks for Lesion Segmentation of Chronic Stroke CLCI-Net:用于慢性卒中病变分割的跨级别融合和上下文推断网络 |
|
31.Brain Segmentation from k-Space with End-to-End Recurrent Attention Network 使用端到端循环注意力网络从k空间进行脑分割 |
|
32.Spatial Warping Network for 3D Segmentation of the Hippocampus in MR Images 用于MR图像中海马3D分割的空间扭曲网络 |
|
33.CompareNet: Anatomical Segmentation Network with Deep Non-local Label Fusion CompareNet:具有深度非局部标签融合的解剖学分割网络 |
|
34.A Joint 3D+2D Fully Convolutional Framework for Subcortical Segmentation 联合3D + 2D全卷积框架用于皮层下分割 |
|
35.U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets U-ReSNet:与深网的注册和分段的最终耦合 |
|
36.Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI 生成对抗网络,对运动影响的新生儿脑MRI进行分段 |
|
37.Interactive Deep Editing Framework for Medical Image Segmentation 交互式深度编辑框架,用于医学图像分割 |
|
38.Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices 提拉米苏和2.5D堆叠切片的多发性硬化病变分割 |
|
39.Improving Multi-atlas Segmentation by Convolutional Neural Network Based Patch Error Estimation 基于卷积神经网络补丁误差估计的多图集分割 |
|
40.Unsupervised Deep Learning for Bayesian Brain MRI Segmentation 用于贝叶斯MRI分割的无监督深度学习 |
|
41.Online Atlasing Using an Iterative Centroid 使用迭代质心的在线图集 |
|
42.ARS-Net: Adaptively Rectified Supervision Network for Automated 3D Ultrasound Image Segmentation ARS-Net:用于自动3D超声图像分割的自适应校正监督网络 |
|
43.Complete Fetal Head Compounding from Multi-view 3D Ultrasound 通过多视图3D超声完成胎头的合成 |
|
44.SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation SegNAS3D:用于3D图像分割的具有无导数全局优化的网络体系结构搜索 |
|
45.Overfitting of Neural Nets Under Class Imbalance: Analysis and Improvements for Segmentation 类不平衡下神经网络的过度拟合:细分的分析与改进 |
|
46.RSANet: Recurrent Slice-Wise Attention Network for Multiple Sclerosis Lesion Segmentation RSANet:用于多发性硬化病变分割的复发性分切关注网络 |
|
47.Deep Cascaded Attention Network for Multi-task Brain Tumor Segmentation 深度级联注意力网络用于多任务脑肿瘤分割 |
|
48.A Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation 部分可逆的U-Net,可实现内存高效的体积图像分割 |
|
49.3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation 3DQ:用于体积全脑分割的紧凑型量化神经网络 |
|
50.Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion 通过特征解缠和门控融合进行稳健的多模态脑肿瘤分割 |
|
51.Multi-task Attention-Based Semi-supervised Learning for Medical Image Segmentation 基于多任务注意力的半监督学习医学图像分割 |
|
52.AssemblyNet: A Novel Deep Decision-Making Process for Whole Brain MRI Segmentation AssemblyNet:用于全脑MRI分割的新型深度决策过程 |
|
53.Automated Parcellation of the Cortex Using Structural Connectome Harmonics 使用结构Connectome谐波自动分离皮质 |
|
54.Hierarchical Parcellation of the Cerebellum 小脑的分层分割 |
|
55.Intrinsic Patch-Based Cortical Anatomical Parcellation Using Graph Convolutional Neural Network on Surface Manifold 使用基于图卷积神经网络的表面流形基于内在补丁的皮质解剖分割 |
|
56.Cortical Surface Parcellation Using Spherical Convolutional Neural Networks 球面卷积神经网络的皮质表面分裂 |
|
57.A Soft STAPLE Algorithm Combined with Anatomical Knowledge 结合解剖知识的软STAPLE算法 |
Diffusion-Weighted Magnetic Resonance Imaging(扩散加权磁共振成像) | 概要 |
---|---|
58.Multi-stage Image Quality Assessment of Diffusion MRI via Semi-supervised Nonlocal Residual Networks 基于半监督非局部残差网络的扩散MRI多阶段图像质量评估 |
|
59.Reconstructing High-Quality Diffusion MRI Data from Orthogonal Slice-Undersampled Data Using Graph Convolutional Neural Networks 使用图卷积神经网络从正交切片欠采样数据重构高质量扩散MRI数据 |
|
60.Surface-Based Tracking of U-Fibers in the Superficial White Matter 浅白色物质中U纤维的基于表面的跟踪 |
|
61.Probing Brain Micro-architecture by Orientation Distribution Invariant Identification of Diffusion Compartments 通过扩散室的方向分布不变性识别来探究脑微结构 |
|
62.Characterizing Non-Gaussian Diffusion in Heterogeneously Oriented Tissue Microenvironments 表征非高斯扩散在异质取向的组织微环境中 |
|
63.Topographic Filtering of Tractograms as Vector Field Flows 牵引图的地形过滤作为矢量场流 |
|
64.Enabling Multi-shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE 使用Deep SHORE启用数据驱动的扩散模型的多壳b值通用化 |
|
65.Super-Resolved q-Space Deep Learning 超解析q空间深度学习 |
|
66.Joint Identification of Network Hub Nodes by Multivariate Graph Inference 多元图论推理的网络集线器节点联合识别 |
|
67.Deep White Matter Analysis: Fast, Consistent Tractography Segmentation Across Populations and dMRI Acquisitions 深层白色物质分析:快速一致的人群分割和dMRI采集 |
|
68.Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling 使用数据驱动贝叶斯建模的改进胎盘参数估计 |
|
69.Optimal Experimental Design for Biophysical Modelling in Multidimensional Diffusion MRI 多维扩散核磁共振成像中生物物理模型的最佳实验设计 |
|
70.DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography DeepTract:用于白色物质纤维术的概率深度学习框架 |
|
71.Fast and Scalable Optimal Transport for Brain Tractograms 快速,可扩展的脑电图最佳运输 |
|
72.A Hybrid Deep Learning Framework for Integrated Segmentation and Registration: Evaluation on Longitudinal White Matter Tract Changes 混合的深度学习框架,用于集成的细分和注册:纵向白色物质道变化的评估 |
|
73.Constructing Consistent Longitudinal Brain Networks by Group-Wise Graph Learning 群智图学习构建一致的纵向脑网络 |
Functional Neuroimaging (fMRI)(功能性神经影像学(fMRI)) | 概要 |
---|---|
74.Multi-layer Temporal Network Analysis Reveals Increasing Temporal Reachability and Spreadability in the First Two Years of Life 多层时间网络分析揭示了生命头两年的时间可及性和可扩展性不断提高 |
|
75.A Matched Filter Decomposition of fMRI into Resting and Task Components fMRI的匹配滤波器分解为休息和任务成分 |
|
76.Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy 多类深度主动学习,用于在明场显微镜中检测红细胞亚型 |
|
77.Identification of Abnormal Circuit Dynamics in Major Depressive Disorder via Multiscale Neural Modeling of Resting-State fMRI 通过静息状态fMRI的多尺度神经模型识别严重抑郁障碍的异常回路动力学 |
|
78.Integrating Functional and Structural Connectivities via Diffusion-Convolution-Bilinear Neural Network 通过扩散-卷积-双线性神经网络整合功能和结构连通性 |
|
79.Invertible Network for Classification and Biomarker Selection for ASD 用于ASD分类和生物标志物选择的可逆网络 |
|
80.Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data 集成神经网络和字典学习以从功能连接组学数据中进行多维临床表征 |
|
81.Revealing Functional Connectivity by Learning Graph Laplacian 通过学习图拉普拉斯算子揭示功能连通性 |
|
82.Constructing Multi-scale Connectome Atlas by Learning Graph Laplacian of Common Network 通过学习通用网络的图拉普拉斯算子构建多尺度Connectome图集 |
|
83.Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale 使用拓扑特征和深度学习进行自闭症分类:警示故事 |
|
84.Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net 通过混合时空神经体系结构搜索网从基于任务的fMRI数据中识别层次结构 |
|
85.A Deep Learning Framework for Noise Component Detection from Resting-State Functional MRI 深度学习框架,用于从静止状态功能磁共振成像检测噪声成分 |
|
86.A Novel Graph Wavelet Model for Brain Multi-scale Activational-Connectional Feature Fusion 脑多尺度激活-连接特征融合的新型图小波模型 |
|
87.Combining Multiple Behavioral Measures and Multiple Connectomes via Multipath Canonical Correlation Analysis 通过多径典范相关分析将多种行为测度和多个连接组结合起来 |
|
88.Decoding Brain Functional Connectivity Implicated in AD and MCI 解码涉及AD和MCI的大脑功能连接 |
|
89.Interpretable Feature Learning Using Multi-output Takagi-Sugeno-Kang Fuzzy System for Multi-center ASD Diagnosis 使用多输出Takagi-Sugeno-Kang模糊系统的可解释特征学习用于多中心ASD诊断 |
Miscellaneous Neuroimaging(混杂神经影像) | 概要 |
---|---|
90.Doubly Weak Supervision of Deep Learning Models for Head CT 头部CT的深度学习模型的双重弱监督 |
|
91.Radiologist-Level Stroke Classification on Non-contrast CT Scans with Deep U-Net 带有深U-Net的非对比CT扫描的放射线水平卒中分类 |
|
92.FocusNet: Imbalanced Large and Small Organ Segmentation with an End-to-End Deep Neural Network for Head and Neck CT Images 使用多输出Takagi-Sugeno-Kang模糊系统的可解释特征学习用于多中心ASD诊断 |
|
93.Regression-Based Line Detection Network for Delineation of Largely Deformed Brain Midline 基于回归的线检测网络用于大变形脑中线的勾画 |
|
94.Siamese U-Net with Healthy Template for Accurate Segmentation of Intracranial Hemorrhage 带有健康模板的暹罗U-Net,可准确分割颅内出血 |
|
95.Automated Infarct Segmentation from Follow-up Non-Contrast CT Scans in Patients with Acute Ischemic Stroke Using Dense Multi-Path Contextual Generative Adversarial Network 使用密集多路径上下文生成对抗网络,对急性缺血性卒中患者的随访非造影CT扫描进行自动梗塞分割 |
|
96.Recurrent Sub-volume Analysis of Head CT Scans for the Detection of Intracranial Hemorrhage 头颅CT扫描的复发性子体积分析以检测颅内出血 |
|
97.Cephalometric Landmark Detection by Attentive Feature Pyramid Fusion and Regression-Voting 细观特征金字塔融合和回归投票的头颅测量地标检测 |
Shape (Including Neuroimage Shape)( 形状(包括神经影像形状)) | 概要 |
---|---|
98.A CNN-Based Framework for Statistical Assessment of Spinal Shape and Curvature in Whole-Body MRI Images of Large Populations 基于CNN的大人群全身MRI图像中脊柱形状和曲率统计评估的框架 |
|
99.Exploiting Reliability-Guided Aggregation for the Assessment of Curvilinear Structure Tortuosity 利用可靠性指导的聚集度评估曲线结构的曲折性 |
|
100.A Surface-Theoretic Approach for Statistical Shape Modeling 统计形状建模的表面理论方法 |
|
101.One-Stage Shape Instantiation from a Single 2D Image to 3D Point Cloud 从单个2D图像到3D点云的一阶段形状实例化 |
|
102.Placental Flattening via Volumetric Parameterization 通过体积参数化使胎盘扁平化 |
|
103.Fast Polynomial Approximation to Heat Diffusion in Manifolds 流形中热扩散的快速多项式逼近 |
|
104.Hierarchical Multi-geodesic Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates 解剖形状和协变量的时间轨迹纵向分析的多层次多地心模型 |
|
105.Clustering of Longitudinal Shape Data Sets Using Mixture of Separate or Branching Trajectories 使用单独或分支轨迹的混合对纵向形状数据集进行聚类 |
|
106.Group-Wise Graph Matching of Cortical Gyral Hinges 皮质陀螺铰链的明智组合图匹配 |
|
107.Multi-view Graph Matching of Cortical Landmarks 皮质地标的多视图图匹配 |
|
108.Patient-Specific Conditional Joint Models of Shape, Image Features and Clinical Indicators 特定于患者的形状,图像特征和临床指标的条件联合模型 |
|
109.Surface-Based Spatial Pyramid Matching of Cortical Regions for Analysis of Cognitive Performance 皮质区域基于表面的空间金字塔匹配,用于认知表现分析 |
Prediction(预测) | 概要 |
---|---|
110.Diagnosis-Guided Multi-modal Feature Selection for Prognosis Prediction of Lung Squamous Cell Carcinoma 诊断指导的多模式特征选择对肺鳞状细胞癌的预后预测 |
|
111.Graph Convolution Based Attention Model for Personalized Disease Prediction 基于图卷积的个性化疾病预测注意模型 |
|
112.Predicting Early Stages of Neurodegenerative Diseases via Multi-task Low-Rank Feature Learning 通过多任务低秩特征学习预测神经退行性疾病的早期阶段 |
|
113.Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments over Progressions 通过全局对齐的成像生物标志物丰富的进展改进认知成果的预测。 |
|
114.Deep Granular Feature-Label Distribution Learning for Neuroimaging-Based Infant Age Prediction 基于神经影像的婴儿年龄预测的深度颗粒特征标签分布学习 |
|
115.End-to-End Dementia Status Prediction from Brain MRI Using Multi-task Weakly-Supervised Attention Network 使用多任务弱监督注意力网络从脑部MRI端到端痴呆状态预测 |
|
116.Unified Modeling of Imputation, Forecasting, and Prediction for AD Progression AD进展的插补,预测和预测的统一建模 |
|
117.LSTM Network for Prediction of Hemorrhagic Transformation in Acute Stroke LSTM网络用于预测急性中风的出血性转化 |
|
118.Inter-modality Dependence Induced Data Recovery for MCI Conversion Prediction 模态相关性引起的MCI转换预测数据恢复 |
|
119.Preprocessing, Prediction and Significance: Framework and Application to Brain Imaging 预处理,预测和意义:脑成像的框架和应用 |
|
120.Early Prediction of Alzheimer’s Disease Progression Using Variational Autoencoders 使用变分自动编码器对阿尔茨海默氏病进展的早期预测 |
|
121.Integrating Heterogeneous Brain Networks for Predicting Brain Disease Conditions 集成异构大脑网络以预测脑部疾病状况 |
Detection and Localization(侦测和定位) | 概要 |
---|---|
122.Uncertainty-Informed Detection of Epileptogenic Brain Malformations Using Bayesian Neural Networks 使用贝叶斯神经网络进行不确定性知觉性癫痫脑畸形的检测 |
|
123.Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network 通过神经网络基于强度的距离回归自动检测病变 |
|
124.Intracranial Aneurysm Detection from 3D Vascular Mesh Models with Ensemble Deep Learning 集成深度学习从3D血管网格模型中进行颅内动脉瘤检测 |
|
125.Automated Noninvasive Seizure Detection and Localization Using Switching Markov Models and Convolutional Neural Networks 使用切换马尔可夫模型和卷积神经网络的自动化无创癫痫发作检测和定位 |
|
126.Multiple Landmark Detection Using Multi-agent Reinforcement Learning 使用多主体强化学习的多地标检测 |
|
127.Spatiotemporal Breast Mass Detection Network (MD-Net) in 4D DCE-MRI Images 4D DCE-MRI图像中的时空乳房质量检测网络(MD-Net) |
|
128.Automated Pulmonary Embolism Detection from CTPA Images Using an End-to-End Convolutional Neural Network 使用端到端卷积神经网络从CTPA图像自动检测肺栓塞 |
|
129.Unsupervised Anomaly Localization Using Variational Auto-Encoders 使用变分自动编码器的无监督异常定位 |
|
130.HR-CAM: Precise Localization of Pathology Using Multi-level Learning in CNNs HR-CAM:在CNN中使用多级学习对病理进行精确定位 |
|
131.Novel Iterative Attention Focusing Strategy for Joint Pathology Localization and Prediction of MCI Progression 关节病理学定位和MCI进展预测的新型迭代注意力集中策略 |
|
132.Automatic Vertebrae Recognition from Arbitrary Spine MRI Images by a Hierarchical Self-calibration Detection Framework 通过分层自校准检测框架从任意脊柱MRI图像中自动识别椎骨 |
Machine Learning(机器学习) | 概要 |
---|---|
133.Image Data Validation for Medical Systems 医疗系统的图像数据验证 |
|
134.Captioning Ultrasound Images Automatically 自动为超声图像加字幕 |
|
135.Feature Transformers: Privacy Preserving Lifelong Learners for Medical Imaging 功能变形金刚:保护医学成像终身学习者的隐私 |
|
136.As Easy as 1, 2…4? Uncertainty in Counting Tasks for Medical Imaging 像1、2 … 4一样简单? 医学影像计数任务的不确定性 |
|
137.Generalizable Feature Learning in the Presence of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification 存在数据偏差和领域分类失衡的广义特征学习及其在皮肤病变分类中的应用 |
|
138.Learning Task-Specific and Shared Representations in Medical Imaging 学习医学成像中特定于任务的共享表示 |
|
139.Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis 模型创世纪:用于3D医学图像分析的通用自学模型 |
|
140.Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation Sonographer注视辅助蒸馏的高效超声图像分析模型 |
|
141.Fetal Pose Estimation in Volumetric MRI Using a 3D Convolution Neural Network 使用3D卷积神经网络的容积MRI中的胎儿姿势估计 |
|
142.Multi-stage Prediction Networks for Data Harmonization 用于数据协调的多阶段预测网络 |
|
143.Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik’s Cube 通过玩魔方来自我监督3D医学图像的特征学习 |
|
144.Bayesian Volumetric Autoregressive Generative Models for Better Semisupervised Learning 用于更好的半监督学习的贝叶斯体积自回归生成模型 |
|
145.Hydranet: Data Augmentation for Regression Neural Networks Hydranet:回归神经网络的数据增强 |
|
146.A Dirty Multi-task Learning Method for Multi-modal Brain Imaging GeneticsI 健壮和有区别的脑基因组关联研究 |
|
147.Robust and Discriminative Brain Genome Association Study 从多视图图像中学习形状先验,以实现可靠的心脏MR分割 |
|
148.Symmetric Dual Adversarial Connectomic Domain Alignment for Predicting Isomorphic Brain Graph from a Baseline Graph 从基线图预测同构脑图的对称双对抗性连体域对齐 |
|
149.Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks 使用表面到表面周期一致的对抗网络协调婴儿皮质的厚度 |
|
150.Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference 使用因果推理量化神经影像数据集中的混淆性偏见 |
Computer-Aided Diagnosis(计算机辅助诊断) | 概要 |
---|---|
151.Multi Scale Curriculum CNN for Context-Aware Breast MRI Malignancy Classification 多尺度课程CNN用于情境感知乳房MRI恶性分类 |
|
152.Deep Angular Embedding and Feature Correlation Attention for Breast MRI Cancer Analysis 乳腺MRI癌分析的深角包埋和特征相关注意 |
|
153.Fully Deep Learning for Slit-Lamp Photo Based Nuclear Cataract Grading 基于裂隙照片的核白内障分级的完全深度学习 |
|
154.Overcoming Data Limitation in Medical Visual Question Answering 克服医学视觉问答中的数据限制 |
|
155.Multi-Instance Multi-Scale CNN for Medical Image Classification 用于医学图像分类的多实例多尺度CNN |
|
156.Improving Uncertainty Estimation in Convolutional Neural Networks Using Inter-rater Agreement 使用评分人间协议改进卷积神经网络的不确定性估计 |
|
157.Improving Skin Condition Classification with a Visual Symptom Checker Trained Using Reinforcement Learning 使用强化学习训练的视觉症状检查器改善皮肤状况分类 |
|
158.DScGANS: Integrate Domain Knowledge in Training Dual-Path Semi-supervised Conditional Generative Adversarial Networks and S3VM for Ultrasonography Thyroid Nodules Classification DScGANS:整合领域知识,训练双路径半监督条件生成对抗网络和S3VM,以进行超声甲状腺结节分类 |
|
159.Similarity Steered Generative Adversarial Network and Adaptive Transfer Learning for Malignancy Characterization of Hepatocellualr Carcinoma 肝癌相似性导向的对抗性对抗网络和自适应转移学习 |
|
160.Unsupervised Clustering of Quantitative Imaging Phenotypes Using Autoencoder and Gaussian Mixture Model 使用自动编码器和高斯混合模型的定量成像表型的无监督聚类 |
|
161.Adaptive Sparsity Regularization Based Collaborative Clustering for Cancer Prognosis 基于自适应稀疏正则化的协同聚类用于癌症预后 |
|
162.Coronary Artery Plaque Characterization from CCTA Scans Using Deep Learning and Radiomics 使用深度学习和放射学从CCTA扫描中对冠状动脉斑块进行表征 |
|
163.Response Estimation Through Spatially Oriented Neural Network and Texture Ensemble (RESONATE) 通过面向空间的神经网络和纹理集合(RESONATE)进行响应估计 |
|
164.STructural Rectal Atlas Deformation (StRAD) Features for Characterizing Intra- and Peri-wall Chemoradiation Response on MRI 结构性直肠图谱变形(StRAD)功能可表征MRI的壁内和周壁化学放射反应 |
|
165.Dynamic Routing Capsule Networks for Mild Cognitive Impairment Diagnosis 动态路由胶囊网络用于轻度认知障碍诊断 |
|
166.Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-Dimensional Framework 在耦合的低维框架中桥接成像,遗传学和诊断 |
|
167.Global and Local Interpretability for Cardiac MRI Classification 心脏MRI分类的全局和局部可解释性 |
|
168.Let’s Agree to Disagree: Learning Highly Debatable Multirater Labelling 让我们不同意:学习高度争议的Multirater标签 |
|
169.Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian 通过Hodge Laplacian对脑网络中的组级孔结构进行共同识别 |
|
170.Confident Head Circumference Measurement from Ultrasound with Real-Time Feedback for Sonographers 超声对超声检查者的实时测量有信心,可测量超声头围 |
Image Reconstruction and Synthesis(图像重建与合成) | 概要 |
---|---|
171.Detection and Correction of Cardiac MRI Motion Artefacts During Reconstruction from k-space 从k空间重建过程中心脏MRI运动伪影的检测和校正 |
|
172.Exploiting Motion for Deep Learning Reconstruction of Extremely-Undersampled Dynamic MRI 利用运动进行深度欠采样动态MRI的深度学习重建 |
|
173.VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction VS-Net:用于加速并行MRI重建的可变分割网络 |
|
174.A Novel Loss Function Incorporating Imaging Acquisition Physics for PET Attenuation Map Generation Using Deep Learning 结合成像采集物理的新型损耗函数,用于使用深度学习的PET衰减图生成 |
|
175.A Prior Learning Network for Joint Image and Sensitivity Estimation in Parallel MR Imaging 并行MR成像中联合图像和灵敏度估计的先验学习网络 |
|
176.Consensus Neural Network for Medical Imaging Denoising with Only Noisy Training Samples 共识神经网络用于仅使用嘈杂训练样本进行医学成像降噪 |
|
177.Consistent Brain Ageing Synthesis 一致的大脑衰老综合 |
|
177.Hybrid Generative Adversarial Networks for Deep MR to CT Synthesis Using Unpaired Data 使用不成对的数据进行深度MR到CT合成的混合生成对抗网络 |
|
178.Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain 早期发育大脑的纵向图纹的表面体积一致构造 |
|
179.Variational AutoEncoder for Regression: Application to Brain Aging Analysis 回归的变分自动编码器:在脑衰老分析中的应用 |
|
180.Arterial Spin Labeling Images Synthesis via Locally-Constrained WGAN-GP Ensemble 通过局部约束的WGAN-GP集合进行动脉自旋标记图像合成 |
|
181.SkrGAN: Sketching-Rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis SkrGAN:用于医学图像合成的草图绘制无条件生成对抗网络 |
|
182.Wavelet-based Semi-supervised Adversarial Learning for Synthesizing Realistic 7T from 3T MRI 基于小波的半监督对抗学习,可从3T MRI合成逼真的7T |
|
183.DiamondGAN: Unified Multi-modal Generative Adversarial Networks for MRI Sequences Synthesis DiamondGAN:MRI序列合成的统一多模态生成对抗网络 |