- python中的scatter()函数用法
品易HTTP
pythonjavascriptcssjs人工智能
若是现在已经对数据化有了解的话,那就一定要来参与看看本章要学习的函数,在样式以及排版上效果还是很好的,经常被用于测试数据上的大小更改以及设置不同颜色,还有时候,对于线条的宽度的更改也都需要利用到这个函数,以上基本就是本章函数的基本用法了,下面进行详细讲述。制作如图所示图片:需要准备:X、Y轴包括数值以及大小和颜色调用语法:plt.scatter()实现代码:importmatplotlibasmp
- 深度学习中的Channel,通道数是什么?
%KT%
深度学习深度学习人工智能
参考文章:直观理解深度学习的卷积操作,超赞!-CSDN博客如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客深度学习-卷积神经网络—卷积操作详细介绍_深度卷积的作用-CSDN博客正文:在跑深度学习代码的过程中,经常遇到的一个报错是:模型尺寸不匹配的问题。一般pytorch中尺寸/张量的表现方式是:torch.size([16,3,24,24])。这四个参数的含义如下:16
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 大模型工程师学习日记(五):基于LangServe的AI服务架构深度解析
MMMMMMMay Love Code
学习架构语言模型深度学习人工智能git
1.概述LangServe️帮助开发者将LangChain可运行和链部署为RESTAPI。该库集成了FastAPI并使用pydantic进行数据验证。Pydantic是一个在Python中用于数据验证和解析的第三方库,现在是Python中使用广泛的数据验证库。它利用声明式的方式定义数据模型和Python类型提示的强大功能来执行数据验证和序列化,使您的代码更可靠、更可读、更简洁且更易于调试。。它还可
- 远程调试Python脚本之ptvsd
工头阿乐
PyTorch深度学习python开发语言
深度学习文章目录深度学习前言前言有时候需要远程调试Python脚本,怎么办呢…以下这段代码用于远程调试Python脚本,特别是通过VisualStudioCode(VSCode)的远程调试功能。它会在指定的服务器IP和端口上等待调试器的连接。#检查是否提供了服务器IP和端口ifargs.server_ipandargs.server_port:#远程调试-参见https://code.visual
- yolo模型coco数据集详解
工头阿乐
深度学习YOLO
深度学习文章目录深度学习前言前言instances_train2017.json和instances_val2017.json文件均分为五大部分,这五部分对应的关键字分别为info、licenses、images、annotations、categories。{"info":info,"licenses":[license1,license2,license3,...],"images":[ima
- 图像处理之白平衡(附源码)
FPGA工程狮-阿水
Python图像处理图像处理人工智能pythonisp
图像处理之白平衡(附源码)概要白平衡(WhiteBalance)是图像处理和摄影中的一种技术,旨在消除由于光源色温差异导致的颜色偏差,使得图像中的白色和其他颜色呈现出自然、真实的效果。基本概念白平衡是调整图像中各个颜色通道(红色、绿色和蓝色)的亮度和色彩平衡,以消除由不同光源(如日光、白炽灯、荧光灯等)产生的色偏。其目的是让图像看起来像是在中性白光下拍摄的,从而确保图像中的白色看起来确实是白色,其
- 机器学习之向量化
珠峰日记
AI理论与实践机器学习人工智能
文章目录向量化是什么为什么要向量化提升计算效率简化代码与增强可读性适配模型需求怎么做向量化数据预处理特征提取特征选择向量构建机器学习与深度学习中向量化的区别数据特征提取方式机器学习深度学习模型结构与复杂度机器学习深度学习计算资源需求机器学习深度学习数据规模适应性机器学习深度学习向量化是什么向量化是把数据转化为向量形式进行表示与处理的过程。在机器学习与深度学习的范畴内,现实中的各类数据,像文本、图像
- 【重回基础】理解CPU Cache及缓存一致性MESI
Patrick_Lam
重回基础CPUCacheMESI缓存一致性
文章目录一、前言二、为何需要CPUCache三、L1、L2、L3Cache三级缓存结构四、CacheLine:与内存数据交换的最小单位五、MEIS:缓存一致性5.1底层操作5.2MESI协议参考一、前言原打算重新学习一下volatile的实现原理,其中涉及到指令调度重排和数据可见性保证,这两者的理解离不开对CPUCache的掌握,因此,先重温一下CPUCache,便有了本文。二、为何需要CPUCa
- 【脑洞小剧场】零帧起手创业小公司之 新人入职的一天
Foyo Designer
技术职场小剧职场和发展程序人生学习方法改行学it创业创新远程工作程序员创富
点击查看小剧场合集https://blog.csdn.net/foyodesigner/category_12896948.html阳光明媚的早晨,段萌儿怀揣着对新工作的无限憧憬,踏入了这家充满未知的小公司。然而,她万万没想到,第一天上班就迎来了一场“惊悚”之旅。场景一:段萌儿的“惊悚”发现段萌儿,新入职的前端工程师,一早便迫不及待地打开了公司的代码库,想要一窥项目的“真容”。然而,当她看到代码库
- 从零精通机器学习:线性回归入门
吴师兄大模型
0基础实现机器学习入门到精通机器学习线性回归人工智能python算法回归开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 利用deepseek AI制作视频的小白教程
银行金融科技
银行信息系统架构详解机器学习人工智能deepseek
以下是基于DeepSeekAI的完整视频制作教程,涵盖从剧本到成片的全流程操作(附关键技巧):一、前期准备(1天)1.分镜优化根据之前的分镜脚本,用Notion或Excel整理出AI友好型分镜表(示例):画面描述关键词时长动态水墨展开成卷轴水墨山水、花瓣特效、东晋风格15秒Q版人物在曲水流觞放纸船全息投影、透明茶具、童声配音45秒2.素材预生成文本转图像:bash#用DeepSeekCoder生成
- 2023华东师范大学计算机复试上机真题
猿六凯
华为od算法
2023华东师范大学计算机复试上机真题2022华东师范大学计算机复试上机真题2021华东师范大学计算机复试上机真题2023华东师范大学计算机复试机试真题2022华东师范大学计算机复试机试真题2021华东师范大学计算机复试机试真题在线评测:传送门:pgcode.cn骑车路线题目描述Tomislav最近发现自己的身材完全走样了,她走楼梯都变得很累。一天早上她起来以后,她决定恢复姣好的身材。她最喜欢的运
- lxml学习笔记
weixin_33843409
python
问题1:有一个XML文件,如何解析问题2:解析后,如果查找、定位某个标签问题3:定位后如何操作标签,比如访问属性、文本内容等fromlxmlimportetree->导入模块,该库常用的XML处理功能都在lxml.etree中requests+lxml解析小from lxml import etree import requests page = 1 url = 'http://www.
- lxml模块的学习
bad kid's cute
lxml模块lxml模块python爬虫
1.lxml的认识在前面学习了xpath的语法,那么在代码中我们如何使用xpath呢,对应的我们需要lxm博文链接:xpath和lxml类库安装方式:pipinstalllxml2.lxml的使用1.导入lxml的etree库(导入没有提示不代表不能用)fromlxmlimportetree2.利用etree.HTML,将字符串转化为Element对象,Element对象具有xpath的方法,返回
- python技巧之下划线
老虎也淘气
Python编程掌握指南pythondjango开发语言
♂️个人主页@老虎也淘气个人主页✍作者简介:Python学习者希望大家多多支持我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注python技巧之下划线1、python的moudles文件中__all__作用2、__slots__用于限定类属性,如:3、下面的小技巧可以获取私有变量:4、下划线种类单个下划线(_)单下划线前缀的名称(例如_shahriar)双下划线前缀的名称(例如__s
- AI学习第二天--监督学习 半监督学习 无监督学习
iisugar
机器学习支持向量机人工智能
目录1.监督学习(SupervisedLearning)比喻:技术细节:形象例子:2.无监督学习(UnsupervisedLearning)比喻:技术细节:形象例子:3.半监督学习(Semi-SupervisedLearning)比喻:技术细节:形象例子:4.三者的对比与选择表格总结:5.实际案例对比案例:电商平台用户分群6.关键逻辑总结1.监督学习(SupervisedLearning)比喻:老
- 聊聊Python都能做些什么
·零落·
Python入门到掌握python开发语言
文章目录一、Python简介二、Python都能做些什么1.Web开发2.数据分析和人工智能3.自动化运维和测试4.网络爬虫5.金融科技三、Python开源库都有哪些1.Web开发2.数据分析和科学计算3.机器学习和深度学习4.网络爬虫5.自动化和测试6.其他常用库四、相关链接一、Python简介Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它最初由GuidovanRossu
- 基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
电力程序小学童
聚类matlabISODATA算法风电光伏
目录1主要内容聚类中心选取步骤核方法2部分代码3程序结果4程序链接1主要内容程序复现文献《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》第三章《基于改进ISODATA算法的负荷场景曲线聚类》模型,该方法不止适用于负荷聚类,同样适用于风光等可再生能源聚类,只需要改变聚类的数据即可,该方法的通用性和可创新性强。该代码实现一种基于改进ISODATA算法的负荷场景曲线聚类方法,代码中,主要做了四种聚类
- 软件设计师之编译原理核心知识深度剖析:从词法到语法分析
一杯年华@编程空间
软考中级软考中级
软件设计师之编译原理核心知识深度剖析:从词法到语法分析在软件开发的知识体系中,编译原理是极为关键的一环,它就像一座桥梁,连接着人类可读的程序代码与计算机能够执行的机器指令。我写这篇博客的目的,是希望和大家一起学习进步,深入剖析编译原理中的词法分析和语法分析等核心知识,让这些复杂的概念变得通俗易懂,助力大家在软件设计领域更上一层楼。一、词法分析相关知识(一)正规表达式与正规集正规表达式是描述词法规则
- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- HTML入门
Yeauty
html
HTML的概述什么是HTML:HyperTextMarkupLanguage超文本标记语言超文本:比普通文本更加强大,能够定义许多文本样式标记语言:通过一组标签来对内容进行标记,并且修饰-标签:为什么要学习HTML它是网页设计的设计,基本上所有的网站都是用它开发的如何来学习HTMLHTML语法规范HTML是一个.html或者.htm结尾的文件HTML文件中是头和体两部分HTML是通过一组标签来对内
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 机器学习Pandas_learn4
XW-ABAP
机器学习机器学习pandas人工智能
importpandasaspddefcalculate_goods_covariance():#定义商品销售数据字典goods_sales_data={"时期":["一期","二期","三期","四期"],"苹果":[15,16,3,2],"橘子":[12,14,16,18],"石榴":[11,8,7,1]}#将字典转换为DataFrame对象goods_dataframe=pd.DataFra
- 数据类型和变量
墨香染城城
java
1.字面常量常量即程序运行期间,固定不变的量称为常量,比如:一个礼拜七天,一年12个月等。publicclassDemo{publicstaticvoidmain(String[]args){System.Out.println("helloworld!");System.Out.println(100);System.Out.println(3.14);System.Out.println('A
- 蓝桥杯Python赛道备赛——Day8:动态规划(基础)案例分析
SKY YEAM
蓝桥杯备赛蓝桥杯python动态规划
本博客就上一期中讨论的蓝桥杯动态规划基础问题(包括:递推、记忆化搜索、最长公共子序列和最长上升子序列),给出了六个常见的案例问题。每一个问题都给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。如有不懂,欢迎在评论区提问。前序知识:(1)Python基础语法(2)Day1:基础算法(3)Day7:动态规划(基础)动态规划(基础)案例分析一、递推应用:爬楼梯问题二、递推应用:零钱兑换三、记忆
- 如何使用Python对Excel、CSV文件完成数据清洗与预处理?
Python 集中营
python数据分析应用pythonexcel开发语言
在数据分析和机器学习项目中,数据清洗与预处理是不可或缺的重要环节。现实世界中的数据往往是不完整、不一致且含有噪声的,这些问题会严重影响数据分析的质量和机器学习模型的性能。Python作为一门强大的编程语言,提供了多种库和工具来帮助我们高效地完成数据清洗与预处理任务,其中最常用的库包括Pandas、NumPy、SciPy等。本文将详细介绍如何使用Python对Excel和CSV格式的数据文件进行清洗
- AI:188-利用Python进行自然语言生成和文本摘要
一键难忘
python开发语言人工智能自然语言处理
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~一.利用Python进行自然语言生成和文本摘要近年来,人工智
- 理解深度学习1-简介
shangjg3
PyTorch深度学习实战深度学习人工智能
人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是AI的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与AI同义。深度神经网络是一类机器学习模型,将其应用到数据上的过程称为深度学习。目前,深度网络是最强大和最实用的机器学习模型之一,常见于日常生活中。我们常常用自然语言处理(Nat
- 【实习经历Two:参与开源项目,学习并应用Git】
学前端的小乐子
开源社区实习记录学习git
前端参与开源项目中使用过的git1.参与开源项目(必备技能——git)参与开源项目首先需要进入自己想参加的项目页面点击右边的Fork即可复制到自己的仓库像个人开发时常用的add、commit和push等命令就不过多介绍了,在这里主要是想记录一下自己作为从未参与过开源项目的初学者遇到的一些常用知识点,很感谢本人这次实习的mt老师很有耐心地帮助我解决使用Git过程中遇到的一些问题。a.如何在commi
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f