一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。其实际应用比如:
我们要在n个城市中建立一个通信网络,则连通这n个城市需要布置n-1一条通信线路,这个时候我们需要考虑如何在成本最低的情况下建立这个通信网?
Kruskal算法是一种用来寻找最小生成树的算法,用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
先对边按权重从小到大排序,先选取权重最小的一条边,如果该边的两个节点均为不同的分量,则加入到最小生成树,否则计算下一条边,直到遍历完所有的边。
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。
所有节点分成两个group,一个为已经选取的selected_node(为list类型),一个为candidate_node,首先任取一个节点加入到selected_node,然后遍历头节点在selected_node,尾节点在candidate_node的边,选取符合这个条件的边里面权重最小的边,加入到最小生成树,选出的边的尾节点加入到selected_node,并从candidate_node删除。直到candidate_node中没有备选节点(这个循环条件要求所有节点都有边连接,即边数要大于等于节点数-1,循环开始前要加入这个条件判断,否则可能会有节点一直在candidate中,导致死循环)。
class Graph(object):
def __init__(self, maps):
self.maps = maps
self.nodenum = self.get_nodenum()
self.edgenum = self.get_edgenum()
def get_nodenum(self):
return len(self.maps)
def get_edgenum(self):
count = 0
for i in range(self.nodenum):
for j in range(i):
if self.maps[i][j] > 0 and self.maps[i][j] < 9999:
count += 1
return count
def kruskal(self):
res = []
if self.nodenum <= 0 or self.edgenum < self.nodenum - 1:
return res
edge_list = []
for i in range(self.nodenum):
for j in range(i, self.nodenum):
if self.maps[i][j] < 9999:
edge_list.append([i, j, self.maps[i][j]]) # 按[begin, end, weight]形式加入
edge_list.sort(key=lambda a: a[2]) # 已经排好序的边集合
group = [[i] for i in range(self.nodenum)]
for edge in edge_list:
for i in range(len(group)):
if edge[0] in group[i]:
m = i
if edge[1] in group[i]:
n = i
if m != n:
res.append(edge)
group[m] = group[m] + group[n]
group[n] = []
return res
def prim(self):
res = []
if self.nodenum <= 0 or self.edgenum < self.nodenum - 1:
return res
res = []
# 选择节点
seleted_node = [0]
# 备选节点
candidate_node = [i for i in range(1, self.nodenum)]
while len(candidate_node) > 0:
begin, end, minweight = 0, 0, 9999
for i in seleted_node:
for j in candidate_node:
if self.maps[i][j] < minweight:
minweight = self.maps[i][j]
begin = i
end = j
res.append([begin, end, minweight])
seleted_node.append(end)
candidate_node.remove(end)
return res
max_value = 9999
row0 = [0, 7, max_value, max_value, max_value, 5]
row1 = [7, 0, 9, max_value, 3, max_value]
row2 = [max_value, 9, 0, 6, max_value, max_value]
row3 = [max_value, max_value, 6, 0, 8, 10]
row4 = [max_value, 3, max_value, 8, 0, 4]
row5 = [5, max_value, max_value, 10, 4, 0]
maps = [row0, row1, row2, row3, row4, row5]
graph = Graph(maps)
print('邻接矩阵为\n%s' % graph.maps)
print('节点数据为%d,边数为%d\n' % (graph.nodenum, graph.edgenum))
print('------最小生成树kruskal算法------')
print(graph.kruskal())
print('------最小生成树prim算法')
print(graph.prim())
运行结果:
邻接矩阵为
[[0, 7, 9999, 9999, 9999, 5],
[7, 0, 9, 9999, 3, 9999],
[9999, 9, 0, 6, 9999, 9999],
[9999, 9999, 6, 0, 8, 10],
[9999, 3, 9999, 8, 0, 4],
[5, 9999, 9999, 10, 4, 0]]
节点数据为6,边数为8
------最小生成树kruskal算法------
[[1, 4, 3], [4, 5, 4], [0, 5, 5], [2, 3, 6], [3, 4, 8]]
------最小生成树prim算法
[[0, 5, 5], [5, 4, 4], [4, 1, 3], [4, 3, 8], [3, 2, 6]]
参考:
https://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html
https://blog.csdn.net/mashijia986/article/details/79100925