python模块—序列化和反序列化、json/pickle

文章目录

      • 什么是序列化?
      • 为什么要序列化?
      • json
      • pickle

序列化模块
序列化方法
格式转换
把python中的数据转换成str—序列化
可以str转换成python的数据—反序列化

什么是序列化?

我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

为什么要序列化?

  • 持久保存状态
    需知一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,'状态’会以各种各样有结构的数据类型(也可简单的理解为变量)的形式被保存在内存中。

    内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。

    在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。

    具体的来说,你玩使命召唤闯到了第13关,你保存游戏状态,关机走人,下次再玩,还能从上次的位置开始继续闯关。或如,虚拟机状态的挂起等。

  • 跨平台数据交互

    序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好实用一种序列化的格式,那么便打破了平台/语言差异化带来的限制,实现了跨平台数据交互。

    反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

json

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
转化关系
在这里插入图片描述

import json

dic={
     'name':'alvin','age':23,'sex':'male'}
print(type(dic))#

j=json.dumps(dic)
print(type(j))#


f=open('序列化对象','w')
f.write(j)  #-------------------等价于json.dump(dic,f)
f.close()
#-----------------------------反序列化
import json f=open('序列化对象') data=json.loads(f.read())# 等价于data=json.load(f)
import json
#dct="{'1':111}"#json 不认单引号
#dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1}

dct='{"1":"111"}'
print(json.loads(dct))

#conclusion:
#无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads

pickle

转化关系
在这里插入图片描述

import pickle

dic={
     'name':'alvin','age':23,'sex':'male'}

print(type(dic))#

j=pickle.dumps(dic)
print(type(j))#


f=open('序列化对象_pickle','wb')#注意是w是写入str,wb是写入bytes,j是'bytes'
f.write(j)  #-------------------等价于pickle.dump(dic,f)

f.close()
#-------------------------反序列化
import pickle
f=open('序列化对象_pickle','rb')

data=pickle.loads(f.read())#  等价于data=pickle.load(f)


print(data['age'])

你可能感兴趣的:(#,python包和模块,python,json,序列化)