YoLoV3训练自己的数据集

1.github地址:

https://github.com/AlexeyAB/darknet.git

2.编译

用Makefile的方式进行编译,最终使用的Makefile如下:

GPU=1
CUDNN=1
CUDNN_HALF=0
OPENCV=1
AVX=0
OPENMP=1
LIBSO=1
ZED_CAMERA=0
ZED_CAMERA_v2_8=0

# set GPU=1 and CUDNN=1 to speedup on GPU
# set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision on Tensor Cores) GPU: Volta, Xavier, Turing and higher
# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0)
# set ZED_CAMERA=1 to enable ZED SDK 3.0 and above
# set ZED_CAMERA_v2_8=1 to enable ZED SDK 2.X

USE_CPP=1
DEBUG=1

ARCH= -gencode arch=compute_35,code=sm_35 \
      -gencode arch=compute_50,code=[sm_50,compute_50] \
      -gencode arch=compute_52,code=[sm_52,compute_52] \
        -gencode arch=compute_61,code=[sm_61,compute_61]

OS := $(shell uname)

# GeForce RTX 3070, 3080, 3090
# ARCH= -gencode arch=compute_86,code=[sm_86,compute_86]

# Kepler GeForce GTX 770, GTX 760, GT 740
# ARCH= -gencode arch=compute_30,code=sm_30

# Tesla A100 (GA100), DGX-A100, RTX 3080
# ARCH= -gencode arch=compute_80,code=[sm_80,compute_80]

# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]

# GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Tesla T4, XNOR Tensor Cores
# ARCH= -gencode arch=compute_75,code=[sm_75,compute_75]

# Jetson XAVIER
# ARCH= -gencode arch=compute_72,code=[sm_72,compute_72]

# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61

# GP100/Tesla P100 - DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60

# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]

# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]

# For Tesla GA10x cards, RTX 3090, RTX 3080, RTX 3070, RTX A6000, RTX A40 uncomment:
# ARCH= -gencode arch=compute_86,code=[sm_86,compute_86]


VPATH=./src/
EXEC=darknet
OBJDIR=./obj/

ifeq ($(LIBSO), 1)
LIBNAMESO=libdarknet.so
APPNAMESO=uselib
endif

ifeq ($(USE_CPP), 1)
CC=g++
else
CC=gcc
endif

CPP=g++ -std=c++11
NVCC=nvcc
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON= -Iinclude/ -I3rdparty/stb/include
CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC

ifeq ($(DEBUG), 1)
#OPTS= -O0 -g
#OPTS= -Og -g
COMMON+= -DDEBUG
CFLAGS+= -DDEBUG
else
ifeq ($(AVX), 1)
CFLAGS+= -ffp-contract=fast -mavx -mavx2 -msse3 -msse4.1 -msse4.2 -msse4a
endif
endif

CFLAGS+=$(OPTS)

ifneq (,$(findstring MSYS_NT,$(OS)))
LDFLAGS+=-lws2_32
endif

ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV -I/data_2/opencv/build/install/include
CFLAGS+= -DOPENCV
#LDFLAGS+= `pkg-config --libs opencv4 2> /dev/null || pkg-config --libs opencv`
#COMMON+= `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv`
LDFLAGS+= -L-I/data_2/opencv/build/install/lib -lopencv_core -lopencv_imgproc -lopencv_imgcodecs -lopencv_highgui -lopencv_video -lopencv_videoio
endif

ifeq ($(OPENMP), 1)
    ifeq ($(OS),Darwin) #MAC
        CFLAGS+= -Xpreprocessor -fopenmp
    else
        CFLAGS+= -fopenmp
    endif
LDFLAGS+= -lgomp
endif

ifeq ($(GPU), 1)
COMMON+= -DGPU -I/data/cuda/include
CFLAGS+= -DGPU
ifeq ($(OS),Darwin) #MAC
LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
else
LDFLAGS+= -L/data/cuda/lib -lcuda -lcudart -lcublas -lcurand -lcublasLt
endif
endif

ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
ifeq ($(OS),Darwin) #MAC
CFLAGS+= -DCUDNN -I/usr/local/cuda/include
LDFLAGS+= -L/data/cuda/lib -lcudnn
else
CFLAGS+= -DCUDNN -I/data/cuda/include
LDFLAGS+= -L/data/cuda/lib -lcudnn
endif
endif

ifeq ($(CUDNN_HALF), 1)
COMMON+= -DCUDNN_HALF
CFLAGS+= -DCUDNN_HALF
ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
endif

ifeq ($(ZED_CAMERA), 1)
CFLAGS+= -DZED_STEREO -I/usr/local/zed/include
ifeq ($(ZED_CAMERA_v2_8), 1)
LDFLAGS+= -L/usr/local/zed/lib -lsl_core -lsl_input -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
else
LDFLAGS+= -L/usr/local/zed/lib -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
endif
endif

OBJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o gaussian_yolo_layer.o upsample_layer.o lstm_layer.o conv_lstm_layer.o scale_channels_layer.o sam_layer.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif

OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h

all: $(OBJDIR) backup results setchmod $(EXEC) $(LIBNAMESO) $(APPNAMESO)

ifeq ($(LIBSO), 1)
CFLAGS+= -fPIC

$(LIBNAMESO): $(OBJDIR) $(OBJS) include/yolo_v2_class.hpp src/yolo_v2_class.cpp
    $(CPP) -shared -std=c++11 -fvisibility=hidden -DLIB_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS)

$(APPNAMESO): $(LIBNAMESO) include/yolo_v2_class.hpp src/yolo_console_dll.cpp
    $(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO)
endif

$(EXEC): $(OBJS)
    $(CPP) -std=c++11 $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)

$(OBJDIR)%.o: %.c $(DEPS)
    $(CC) $(COMMON) $(CFLAGS) -c $< -o $@

$(OBJDIR)%.o: %.cpp $(DEPS)
    $(CPP) -std=c++11 $(COMMON) $(CFLAGS) -c $< -o $@

$(OBJDIR)%.o: %.cu $(DEPS)
    $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@

$(OBJDIR):
    mkdir -p $(OBJDIR)
backup:
    mkdir -p backup
results:
    mkdir -p results
setchmod:
    chmod +x *.sh

.PHONY: clean

clean:
    rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)

记录两个编译时遇到的问题:

(1)报错:./src/dark_cuda.c:306:14: error: ‘max_events’ does not name a type; did you mean ‘CUevent’?

static const max_events = 1024;

解决:修改./src/dark_cuda.c的306行为 static const int max_events = 1024;

(2)报错:2 errors detected in the compilation of "/tmp/tmpxft_00001cf9_00000000-9_network_kernels.compute_61.cpp1.ii".

Makefile:185: recipe for target 'obj/network_kernels.o' failed

解决:cuda10.0版本会报这个错误,用cuda10.1或以上,修改之后的路径见上边Makefile的内容。

另外,使用opencv的话,路径修改见上,编译使用的opencv版本为3.4.0

3.准备自己的数据集

(1)train、test文件夹下分别存放JPEFImages、labels、train.txt(test.txt),train.txt(test.txt)存放图片路径,JPEGImages存放图片,labels存放图片标签;

(2)标签内容内   "类别 (box_center_point_x/box_w) (box_center_point_y/box_h) (box_w/img_w) (box_h/img_h)"   ,上述值均为归一化之后的值。一张图片中有多少个标注目标就有多少行以上内容。

4.利用yolov3训练

(1)修改cfg/voc.data内容

classes= 1
train  = /train/train.txt
valid  = /test/test.txt
names = data/voc.names
backup = /darknet/backup/

(2)修改data/voc.names 改为自己的类别名称

(3)修改cfg/yolov3.cfg

注意修改的几个地方:width height steps scales filters anchors classes

(4)开始训练:

export LD_LIBRARY_PATH=/opencvpath/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/cudapath/lib:$LD_LIBRARY_PATH

./darknet detector train cfg/voc.data cfg/yolov3.cfg

 

 

你可能感兴趣的:(深度学习)