python2.6读取excel文件_python读写excel等数据文件方法汇总

python处理数据文件第一步是要读取数据,文件类型主要包括文本文件(csv、txt等)、excel文件、数据库文件、api等。

下面整理下python有哪些方式可以读取数据文件。

1. python内置方法(read、readline、readlines)

read(): 一次性读取整个文件内容。推荐使用read(size)方法,size越大运行时间越长

readline() :每次读取一行内容。内存不够时使用,一般不太用

readlines() :一次性读取整个文件内容,并按行返回到list,方便我们遍历

2. 内置模块(csv)

python内置了csv模块用于读写csv文件,csv是一种逗号分隔符文件,是数据科学中最常见的数据存储格式之一。 csv模块能轻松完成各种体量数据的读写操作,当然大数据量需要代码层面的优化。

csv模块读取文件

# 读取csv文件importcsvwithopen('test.csv','r')asmyFile:lines=csv.reader(myFile)forlineinlines:print(line)

csv模块写入文件

importcsvwithopen('test.csv','w+')asmyFile:myWriter=csv.writer(myFile)# writerrow一行一行写入myWriter.writerow([7,8,9])myWriter.writerow([8,'h','f'])# writerow多行写入myList=[[1,2,3],[4,5,6]]myWriter.writerows(myList)

3. 使用numpy库(loadtxt、load、fromfile)

loadtxt方法

loadtxt用来读取文本文件(包含txt、csv等)以及.gz 或.bz2格式压缩文件,前提是文件数据每一行必须要有数量相同的值。

importnumpyasnp# loadtxt()中的dtype参数默认设置为float# 这里设置为str字符串便于显示np.loadtxt('test.csv',dtype=str)# out:array(['1,2,3', '4,5,6', '7,8,9'], dtype='

load方法

load用来读取numpy专用的.npy, .npz 或者pickled持久化文件。

importnumpyasnp# 先生成npy文件np.save('test.npy',np.array([[1,2,3],[4,5,6]]))# 使用load加载npy文件np.load('test.npy')'''out:array([[1, 2, 3],      [4, 5, 6]])'''

fromfile方法

fromfile方法可以读取简单的文本数据或二进制数据,数据来源于tofile方法保存的二进制数据。读取数据时需要用户指定元素类型,并对数组的形状进行适当的修改。

importnumpyasnpx=np.arange(9).reshape(3,3)x.tofile('test.bin')np.fromfile('test.bin',dtype=np.int)# out:array([0, 1, 2, 3, 4, 5, 6, 7, 8])

4. 使用pandas库(read_csv、read_excel等)

pandas是数据处理最常用的分析库之一,可以读取各种各样格式的数据文件,一般输出dataframe格式。 如:txt、csv、excel、json、剪切板、数据库、html、hdf、parquet、pickled文件、sas、stata等等

read_csv方法

read_csv方法用来读取csv格式文件,输出dataframe格式。

importpandasaspdpd.read_csv('test.csv')

read_excel方法

读取excel文件,包括xlsx、xls、xlsm格式

importpandasaspdpd.read_excel('test.xlsx')

read_table方法

通过对sep参数(分隔符)的控制来对任何文本文件读取

read_json方法

读取json格式文件

df=pd.DataFrame([['a','b'],['c','d']],index=['row 1','row 2'],columns=['col 1','col 2'])j=df.to_json(orient='split')pd.read_json(j,orient='split')

read_html方法

读取html表格

read_clipboard方法

读取剪切板内容

read_pickle方法

读取plckled持久化文件

read_sql方法

读取数据库数据,连接好数据库后,传入sql语句即可

read_dhf方法

读取hdf5文件,适合大文件读取

read_parquet方法

读取parquet文件

read_sas方法

读取sas文件

read_stata方法

读取stata文件

read_gbq方法

读取google bigquery数据

5、读写excel文件(xlrd、xlwt、openpyxl等)

python用于读写excel文件的库有很多,除了前面提到的pandas,还有xlrd、xlwt、openpyxl、xlwings等等。

主要模块:

xlrd库: 从excel中读取数据,支持xls、xlsx

xlwt库: 对excel进行修改操作,不支持对xlsx格式的修改

xlutils库: 在xlw和xlrd中,对一个已存在的文件进行修改

openpyxl: 主要针对xlsx格式的excel进行读取和编辑

xlwings: 对xlsx、xls、xlsm格式文件进行读写、格式修改等操作

xlsxwriter: 用来生成excel表格,插入数据、插入图标等表格操作,不支持读取

Microsoft Excel API: 需安装pywin32,直接与Excel进程通信,可以做任何在Excel里可以做的事情,但比较慢

6. 操作数据库(pymysql、cx_Oracle等)

python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。

主要模块:

pymysql: 用于和mysql数据库的交互

sqlalchemy: 用于和mysql数据库的交互

cx_Oracle: 用于和oracle数据库的交互

sqlite3: 内置库,用于和sqlite数据库的交互

pymssql: 用于和sql server数据库的交互

pymongo: 用于和mongodb非关系型数据库的交互

redis、pyredis: 用于和redis非关系型数据库的交互

你可能感兴趣的:(python2.6读取excel文件_python读写excel等数据文件方法汇总)