- 掌握大数据时代的心跳:实时数据处理的崛起
Echo_Wish
大数据大数据
掌握大数据时代的心跳:实时数据处理的崛起在大数据时代,我们每天都在生成海量的数据——从社交媒体上的点赞到物联网设备上传的传感器数据,数据无处不在。然而,仅仅存储这些数据已经无法满足现代业务的需求,“实时数据处理”已经从一项可选技术跃升为业务成功的关键所在。如何让数据在其生成的瞬间就能被分析、处理并驱动决策,这是我们今天要探讨的重点。为什么实时数据处理如此重要?想象一下这样两个场景:在线交易平台:当
- pandas常用数据格式IO性能对比
lining808
Pythonpandaspython数据分析
前言本文对pandas支持的一些数据格式进行IO(读写)的性能测试,大数据时代以数据为基础,经常会遇到操作大量数据的情景,数据的IO性能尤为重要,本文对常见的数据格式csv、feather、hdf5、jay、parquet、pickle性能进行对比。csvCSV(Comma-SeparatedValues)是一种用于存储表格数据的简单文件格式。在CSV文件中,每一行通常代表一条记录,字段(列)由逗
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- 数据挖掘导论Pangaea-Ning Tan 读书笔记——(第一,二,三章)
小黄人的黄
数据挖掘数据挖掘
《数据挖掘导论》Pang-NingTan,MichaelSteinbach,VipinKumar读书笔记,第一章绪论数据挖掘任务预测任务描述任务分类任务回归任务聚类分析关联分析异常检测章节导读数据挖掘数据处理第2章第3章分类第4章决策树过拟合性能评估等第5章
- DeepSeek一键生成可视化看板
CodeJourney.
数据库算法人工智能能源
在当今数据驱动的时代,数据可视化已成为企业决策和分析的关键工具。然而,传统的数据可视化过程往往需要专业的技术知识和大量的时间成本,这对于许多非技术人员来说是一个巨大的挑战。不过,现在有了DeepSeek,这一切都变得轻松简单。本文将深入探讨DeepSeek一键生成可视化看板的强大功能,以及它如何改变我们处理数据的方式。一、数据可视化的重要性在大数据时代,数据的价值不言而喻。但原始数据往往是繁杂无序
- 第八课:Scrapy框架入门:工业级爬虫开发
deming_su
Pythonscrapy爬虫python
在当今大数据时代,数据抓取已成为信息获取的重要手段。Scrapy作为一个基于Python的开源网络爬虫框架,凭借其高效、灵活的特性,在工业级爬虫开发中占据重要地位。本文将详细介绍Scrapy框架的基本架构、工作流程、关键组件(如Spider类与ItemPipeline)以及中间件机制,并通过一个电商产品爬虫案例,展示如何使用Scrapy框架进行数据抓取。1.Scrapy架构与工作流程Scrapy架
- 【时间序列聚类】从数据中发现隐藏的模式
T-I-M
机器学习人工智能时间序列
在大数据时代,时间序列数据无处不在。无论是股票市场的价格波动、天气的变化趋势,还是用户的点击行为,这些数据都随着时间推移而产生。然而,面对海量的时间序列数据,我们如何从中提取有价值的信息?答案之一就是时间序列聚类。本文将以通俗易懂的方式,带你了解时间序列聚类的基本概念、应用场景以及实现思路,并希望能为你提供一些启发。什么是时间序列聚类?简单来说,时间序列聚类是一种将相似的时间序列归为一类的技术。它
- 使用LangChain访问个人数据第一章-简介
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序正文在大数据时代,数据价值逐渐凸显,打造定制化、个性化服务,个人数据尤为重要。要开发一个具备较强服务能力、能够充分展现个性化智能的应用程序,大模型与个人数据的对齐是一个重要步骤。作为针对大模型开发应运而生的框
- Apache Doris 实现毫秒级查询响应
随风九天
匠心数据库服务javaapacheApacheDoris
1.引言1.1数据分析的重要性随着大数据时代的到来,企业对实时数据分析的需求日益增长。快速、准确地获取数据洞察成为企业在竞争中脱颖而出的关键。传统的数据库系统在处理大规模数据时往往面临性能瓶颈,难以满足实时分析的需求。例如,一个电商公司需要实时监控销售数据以调整库存和营销策略,而传统的数据库可能需要数分钟甚至数小时才能生成报表,这显然无法满足业务需求。1.2ApacheDoris简介ApacheD
- 基于大数据架构的就业岗位推荐系统的设计与实现【java或python】—计算机毕业设计源码+LW文档
qq_375279829
大数据架构python课程设计算法
摘要随着互联网技术的迅猛发展和大数据时代的到来,就业市场日益复杂多变,求职者与招聘方之间的信息不对称问题愈发突出。为解决这一难题,本文设计并实现了一个基于大数据架构的就业岗位推荐系统。该系统通过收集、整合并分析大量求职者简历信息、企业招聘信息以及市场动态数据,运用先进的机器学习算法,为求职者提供个性化的岗位推荐服务,同时帮助企业快速定位到合适的候选人。本文将从系统设计的背景与意义、技术基础、需求分
- 数据集与云计算:云端数据集的管理与应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大数据时代的数据挑战步入21世纪,我们见证了信息技术的爆炸式增长,数据以前所未有的速度产生、存储和使用。从社交媒体互动到科学研究,从电子商务交易到物联网传感器,各行各业都被海量数据所淹没。这种数据爆炸式增长带来了前所未有的机遇和挑战。1.1.1机遇:数据驱动型决策数据的激增为企业和组织提供了前所未有的洞察力。通过分析和理解这些数据,我们可以识别趋势、预测未来行为并做出更明智的决策
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 数据安全策略与实践:从理论到落地
Echo_Wish
大数据高阶实战秘籍大数据
数据安全策略与实践:从理论到落地在大数据时代,数据早已成为企业和机构的核心资产,但随之而来的数据泄露、非法访问和滥用问题也屡见不鲜。从用户隐私到企业机密,再到国家级信息安全,无一不受到数据安全的影响。那么,如何构建高效的数据安全策略并在实际中落地实施?这是我们今天要探讨的核心话题。一、数据安全为何重要?数据泄露的影响在2021年某著名社交平台数据泄露事件中,超过5亿用户的个人信息被曝光,直接导致了
- 《5G NR标准:下一代无线通信技术》读书笔记——LTE概述
Laolu5
读书笔记5g
目录一.LTE概述1.频谱灵活性1.1载波聚合1.2授权辅助接入2.多天线增强2.1扩展的多天线传输2.2多点协作和传输2.3增强的控制信道结构3.密集度、微蜂窝和异构部署3.1中继3.2异构部署3.3微蜂窝开关3.4双连接3.5动态TDD3.6WLAN互通4.终端增强5.新场景5.1设备到设备通信5.2机器类型通信(MTC)5.3降低时延-sTTI5.4V2V和V2X5.5飞行器未完待续一.LT
- taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析
涛思数据(TDengine)
时序数据库tdengine数据库大数据
在当今大数据时代,时序数据库的应用越来越广泛,尤其是在物联网、工业监控、金融分析等领域。TDengine作为一款高性能的时序数据库,凭借独特的存储架构和高效的压缩算法,在存储和查询效率上表现出色。然而,随着数据规模的不断增长,在保证数据安全性和存储效率的同时,如何优化CPU的资源占用,成为了一个值得深入讨论的问题。本文将探讨TDengine在数据写入与查询场景下的压缩解压与加密解密过程中对CPU资
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 低功耗设计的影响、概述、LPMM
TrustZone_
数字IC低功耗
文章目录0-低功率芯片技术或影响整个芯片设计流程设计挑战2-更高抽象层1.数字IC设计中的低功耗处理方式概述1.1系统层面低功耗1.2处理器层面低功耗1.3单元层面低功耗1.4寄存器层面低功耗1.5锁存器层面低功耗1.6SRAM层面低功耗1.7组合逻辑层面低功耗3-《LowPowerMethodologyManualForSystem-on-ChipDesign》读书笔记1引言1.1功耗带来的问题
- 大数据与网络安全讲座
黑客Jack
大数据web安全单例模式
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。挑战一:
- 《数据仓库》读书笔记:第11章 非结构化数据和数据仓库
search-lemon
数据仓库数据仓库
该系列博文为《数据仓库BuildingtheDataWarehouse》一书的读书笔记,笔者将书中重点内容进行概括总结。大致保留书中结构,一部分根据自己的理解进行调整。如发现问题,欢迎批评指正。章节博文1《数据仓库》读书笔记:第1章决策支持系统的发展2《数据仓库》读书笔记:第2章数据仓库环境3《数据仓库》读书笔记:第3章设计数据仓库4《数据仓库》读书笔记:第4章数据仓库中的粒度5《数据仓库》读书笔
- Elasticsearch冷热分离与索引生命周期管理
Cloud_Tech
elasticsearch大数据数据分析数据库阿里云
本文介绍在Elasticsearch集群上,通过生命周期管理ILM(IndexLifecycleManagement)功能,实现冷热数据分离的实践流程。通过本实践,您既可以实现在保证集群读写性能的基础上,自动维护集群上的冷热数据,又能通过优化集群架构,降低企业生产成本。背景信息当今大数据时代,数据时刻在更新变化。尤其是随着时间的积累,存储在Elasticsearch中的数据会越来越多,当数据达到一
- 如何使用DeepSeek进行高效数据挖掘与分析
Small踢倒coffee_氕氘氚
笔记经验分享迭代器模式
##摘要随着大数据时代的到来,数据挖掘与分析技术在各行各业中扮演着越来越重要的角色。DeepSeek作为一种先进的数据挖掘工具,能够帮助用户从海量数据中提取有价值的信息。本文将详细介绍DeepSeek的功能、使用方法及其在实际应用中的优势,旨在为用户提供一份全面的使用指南。##关键词DeepSeek、数据挖掘、数据分析、机器学习、大数据##引言###背景在当今信息爆炸的时代,数据已成为企业决策的重
- 两周学习安排
3分人生
学习
日常安排白天看MySQL实战45讲,每日一讲看图解设计模式每天1-2道力扣算法题(难度中等以上)每天复习昨天的单词,记20个单词,写一篇阅读晚上写服创项目每日产出MySQL实战45讲读书笔记设计模式读书笔记力扣算法题ac记录单词本截图项目接口文档记录,git提交记录第二周MySQL:精读第1-6讲设计模式:学习工厂方法、抽象工厂、单例、建造者、适配器、桥接模式算法:每日1-2题第三周MySQL:精
- 嵌入式Linux设备驱动程序开发指南17(IIO子系统一)——读书笔记
Jack.Jia
linux驱动linux运维服务器
IIO子系统一十七、IIO子系统(一)17.1简介17.2数模转换——DAC实验17.2.1IIO缓冲区17.2.2触发器17.2.3工业I/O事件17.2.4iio工具17.2.5LTC2607——DAC模块介绍17.2.5.1设备树17.2.5.2LTC2607驱动模块介绍17.2.5.2.1用作I2C交互的工业框架17.2.5.2.2用作IIO设备的工业框架17.2.5.3源代码17.3模数
- 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。ApacheHadoop和ApacheSpark是目前主流开源大数据框架。由于其易于部署、高容错性、并行计算能力强、适应数据量大、可编程、社区支持广泛等特点,大大提升了大数据应用的效率和效果。本文通过对Hado
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- 丹尼尔·卡尼曼《噪声》——读书笔记
阅读读书笔记思维
好久没有写博客了,趁着出差有时间,读完了《噪声》这本买了很久的书,整体感觉还是有一些认知层面的迭代的,也整理下书中的一些内容,让自己能够沉下心来把思维和逻辑整理清楚,也能给大家做个分享。书籍介绍这本书是已故诺贝尔经济学奖得主丹尼尔·卡尼曼的新书,之前就是在这位作者去世的时候买回来学习的。本书主要讲的是人类在判断过程中的一个常见“噪声”问题,由于人或者时间原因导致决策的随机性偏差。这本书通过对人类决
- 代理 IP 行业现状与未来趋势分析
跨境Kevin
tcp/ip网络web安全
随着互联网的飞速发展,代理IP行业在近年来逐渐兴起并成为网络技术领域中一个备受关注的细分行业。它在数据采集、网络营销、隐私保护等多个方面发挥着重要作用,其行业现状与未来发展趋势值得深入探讨。目前,代理IP行业呈现出以下几个显著特点。一是市场需求持续增长。在大数据时代,企业对于数据的渴望日益强烈,数据采集工作需要大量的代理IP来突破网站限制,获取全面准确的信息。同时,网络营销从业者为了精准投放广告、
- 【读书笔记】《What is Mathematics》第一章:自然数
还没入门的大菜狗
具体数学读书笔记
为什么要读这本书啊?为什么要学数学?正如书的扉页所述:两千年以来,谙熟一定的数学知识是每一个文明人应有的基本智力为什么作为一个程序猿,也要从头学数学?我数学渣锻炼自己解决问题的能力数据结构逻辑训练为将来转行数据科学做底子(也许永远都不会转)考研(emmm想考一个非全日制玩一玩,感觉非全日制很适合工科学生)嗯,有了以上的理由,所以一定要坚持下去✊为什么是这本书?那么这本书做了什么呢?对整个数学领域中
- Stream流式输出:一种高效的数据处理方式
萧鼎
机器学习算法与实战python算法流式输出stream
在当今的大数据时代,数据量呈爆炸式增长,如何高效地处理这些海量数据成为了一个重要的问题。Stream流式输出作为一种新型的数据处理方式,能够实时处理数据,提高数据处理效率,因此受到了广泛的关注和应用。本文将介绍Stream流式输出的概念、优点、应用场景以及实现方式。一、Stream流式输出的概念Stream流式输出是一种数据处理方式,它将数据以流的形式进行传输和处理。在这种处理方式中,数据不再是集
- Spark技术系列(一):初识Apache Spark——大数据处理的统一分析引擎
数据大包哥
#Spark大数据
Spark技术系列(一):初识ApacheSpark——大数据处理的统一分析引擎1.背景与核心价值1.1大数据时代的技术演进MapReduce的局限性:磁盘迭代计算、中间结果落盘导致的性能瓶颈Spark诞生背景:UCBerkeleyAMPLab实验室为解决复杂迭代计算需求研发(2010年开源)技术定位:基于内存的通用分布式计算框架(支持批处理、流计算、机器学习、图计算等)1.2Spark内置模块S
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数