pandas 数据排序.sort_index()和.sort_values()

import pandas as pd
df = pd.DataFrame(……)
说明:以下“df”为DataFrame对象。

1. df. sort_values()

作用:既可以根据列数据,也可根据行数据排序。
注意:必须指定by参数,即必须指定哪几行或哪几列;无法根据index名和columns名排序(由.sort_index()执行)

调用方式

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
axis:{0 or ‘index’, 1 or ‘columns’}, default 0,默认按照列排序,即纵向排序;如果为1,则是横向排序。
by:str or list of str;如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
ascending:布尔型,True则升序,如果by=['列名1','列名2'],则该参数可以是[True, False],即第一字段升序,第二个降序。
inplace:布尔型,是否用排序后的数据框替换现有的数据框。
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心。
na_position:{‘first’, ‘last’}, default ‘last’,默认缺失值排在最后面。

例:

原数据
df = pd.DataFrame({'b':[1,2,3,2],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3]) 
    b   a   c
2   1   4   1
0   2   3   3
1   3   2   8
3   2   1   2
1.按b列升序排序
df.sort_values(by='b') #等同于df.sort_values(by='b',axis=0)
    b   a   c
2   1   4   1
0   2   3   3
3   2   1   2
1   3   2   8
2.先按b列降序,再按a列升序排序
df.sort_values(by=['b','a'],axis=0,ascending=[False,True]) #等同于df.sort_values(by=['b','a'],axis=0,ascending=[False,True]) 
    b   a   c
1   3   2   8
3   2   1   2
0   2   3   3
2   1   4   1
3.按行3升序排列
df.sort_values(by=3,axis=1) #必须指定axis=1
    a   b   c
2   4   1   1
0   3   2   3
1   2   3   8
3   1   2   2
4.按行3升序,行0降排列
df.sort_values(by=[3,0],axis=1,ascending=[True,False])
    a   c   b
2   4   1   1
0   3   3   2
1   2   8   3
3   1   2   2

注意:指定多列(多行)排序时,先按排在前面的列(行)排序,如果内部有相同数据,再对相同数据内部用下一个列(行)排序,以此类推。如何内部无重复数据,则后续排列不执行。即首先满足排在前面的参数的排序,再排后面参数

2. df. sort_index()

作用:默认根据行标签对所有行排序,或根据列标签对所有列排序,或根据指定某列或某几列对行排序。
注意:df. sort_index()可以完成和df. sort_values()完全相同的功能,但python更推荐用只用df. sort_index()对“根据行标签”和“根据列标签”排序,其他排序方式用df.sort_values()。

调用方式

sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)
axis:0按照行名排序;1按照列名排序
level:默认None,否则按照给定的level顺序排列---貌似并不是,文档
ascending:默认True升序排列;False降序排列
inplace:默认False,否则排序之后的数据直接替换原来的数据框
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心。
na_position:缺失值默认排在最后{"first","last"}
by:按照某一列或几列数据进行排序,但是by参数貌似不建议使用

例:

源数据

import pandas as pd  
df = pd.DataFrame({'b':[1,2,2,3],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3]) 
    b   a   c
2   1   4   1
0   2   3   3
1   3   2   8
3   2   1   2
1.默认按“行标签”升序排列(推荐)
df.sort_index() #默认按“行标签”升序排序,或df.sort_index(axis=0, ascending=True)
    b   a   c
0   2   3   3
1   3   2   8
2   1   4   1
3   2   1   2
2.按“列标签”升序排列(推荐)
df.sort_index(axis=1) #按“列标签”升序排序
    a   b   c
2   4   1   1
0   3   2   3
1   2   3   8
3   1   2   2
3.指定“多列”排序(不推荐)
#先按b列“降序”排列,因为b列中有相同值,相同值再按a列的“升序”排列
df.sort_index(by = ['b','a'],ascending = [False,True]) 
    b   a   c
1   3   2   8
3   2   1   2
0   2   3   3
2   1   4   1
#先按a列“降序”排列,而a列中没有相同值,因此这里按b列的“升序”排列不起作用。
df.sort_index(by = ['a','b'],ascending = [False,True]) 
    b   a   c
2   1   4   1
0   2   3   3
1   3   2   8
3   2   1   2

你可能感兴趣的:(pandas 数据排序.sort_index()和.sort_values())