- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- AI Agent席卷B端:解锁部门效率新玩法,挑战企业软件的智能革命
Hello kele
人工智能经验分享AI编程程序员
随着人工智能技术的迅猛发展,AIAgent(人工智能代理)作为一种新兴的生产力工具,正在深刻改变企业软件生态。特别是在B端(面向企业端)的应用场景中,AIAgent的潜力逐渐显现。从最近Dify在GitHub上突破8万Star、进入开源领域Top100,到OpenManus几天内收获2万Star的惊人表现,开源AI项目的爆发式增长表明,在AI时代,优质的开源项目正以空前的速度吸引关注。与此同时,传
- 3 招学会 UI 色彩搭配,让你的设计亮眼出众
大千UI工场
ui工控界面前端UI设计
在数字化时代,UI(用户界面)设计已成为产品成功与否的关键因素之一。而在UI设计的众多元素中,色彩搭配无疑占据着举足轻重的地位。一个优秀的UI色彩搭配方案,不仅能够吸引用户的注意力,提升产品的视觉吸引力,还能引导用户行为,增强用户对产品的认知与情感共鸣。接下来,我们将详细介绍3招学会UI色彩搭配的技巧,助你让设计亮眼出众。一、UI色彩搭配的重要性UI色彩搭配是用户与产品交互的第一视觉接触点。研究表
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 从静态PPT到智能演讲——人工智能在演示文稿中的应用
知来者逆
智能算法人工智能powerpointLLM大语言模型GPTPPT
1.概述在这个信息过载的时代,能够吸引并持续吸引观众的注意力无疑成为了一项艰巨的任务。公众演讲领域正经历着一场由人工智能(AI)引领的革命。AI不仅在制作引人入胜的内容方面发挥作用,而且在分析演讲的传递方式上也起着关键作用,它正在彻底改变我们传递信息的传统模式。这篇深度博文将带您一探演示技术激动人心的未来,特别是聚焦于AI如何助力演讲者打造既具有影响力又富有吸引力的观众体验。从内容创作到演讲分析,
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
开源
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 千问大模型携手超算互联网:算力驱动下的安全新征程
安全
一、技术革命的新纪元:从“火种”到“燎原”2025年3月,中国国家超算互联网平台宣布接入阿里巴巴“千问QwQ-32B”大模型。这一事件,标志着人类算力资源整合迈入新阶段——超算中心不再仅是巨型计算机的集合,而是演化为承载智能的“数字大脑”。用户可通过平台免费调用百万级Token的计算资源,如同古希腊神话中普罗米修斯盗火予人,超算互联网正将“智能之火”播撒至科研、工业乃至普通开发者手中。然而,火种既
- cv君独家视角 | AI内幕系列七:EfficientViT模型:基于多尺度线性注意力模块,实现高效的高分辨率密集预测
cv君
cv君独家视角AI内幕系列原创项目级实战项目深度学习与计算机视觉精品1024程序员节EfficientViT高分辨率密集预测任务高分辨率视觉模型Transformer人工智能计算机视觉
专题概况cv君独家视角|AI内幕系列是一个专注于人工智能领域的深度专题,旨在为读者揭开AI所有领域技术的神秘面纱,展示其背后的科学原理和实际应用。通过一系列精心策划的文章,我们将带您深入了解AI的各个领域,从计算机视觉到文本语音等多模态领域,从基础理论到前沿技术,从行业应用到未来趋势。无论您是AI领域的工程师或者专家,还是对这一领域充满好奇的读者,这个系列都将为您提供高价值的见解和启发,为您带来横
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- 解码数字基因:数据架构如何重塑企业核心竞争力?——全面解析数据架构的战略价值与实践路径
领码科技
产业篇央国企技能篇数据架构数据模型数据资产目录企业数字化转型TOGAF
摘要:数据架构作为企业数字化转型的“基因图谱”,通过整合业务需求与IT实现,构建起数据流动的规则体系。本文系统剖析数据架构的四大核心组件(数据资产目录、数据模型、数据标准、数据分布)及其协同逻辑,揭示其在TOGAF4A架构中的桥梁作用,解读从架构规划到主数据落地的全生命周期管理。结合华为等标杆企业实践,提供兼具理论深度与实操指导的方法论框架,助力企业打造高质量数据底座。关键词:数据架构、数据模型、
- 佑驾创新获得大众、奥迪定点
高工智能汽车
自动驾驶人工智能
近日佑驾创新宣布,获得多封定点通知书,将为某全球知名车企旗下的合资品牌、豪华品牌提供DMS(驾驶员监测系统)及OMS(乘客监测系统)智能座舱解决方案。据其官方内容显示,两家品牌拥有广泛的用户基础和强大的品牌影响力,此次合作将进一步提升公司的市场覆盖率,同时也加速智能座舱技术的迭代升级。有知情业内人士透露,该合资品牌、豪华品牌为大众、奥迪。据悉,此次佑驾创新定点了多款车型,包括纯电及增程等不同能源类
- 智驾赋能新质生产力,开启“全感知时代”
高工智能汽车
汽车人工智能自动驾驶大数据
当前,人类社会正稳步踏入全领域智能化的崭新时代。工业智能化、农业智能化、商业智能化浪潮奔涌,全方位融入人们的工作与生活,成为推动社会进步的重要力量。在各行各业的高端技术前沿领域,设备智能化、自动化、无人化升级进程正不断加速。然而,环境感知与实时决策能力,始终是横亘在技术飞跃之路上的关键阻碍。这两大能力犹如高悬的“达摩克利斯之剑”,一旦成为短板,就会迅速演变为制约技术突破的“瓶颈”。只有精准、高效地
- a16z Speedrun:加速科技与娱乐的未来
花生糖@
技术创业之路:从创意到企业科技娱乐AI
引言a16z(AndreessenHorowitz)作为硅谷最具影响力的风投公司之一,一直致力于支持那些打破常规、创造新可能性的创始人。随着科技和娱乐领域的融合日益加深,a16z推出了Speedrun计划,旨在帮助前沿科技和娱乐领域的初创公司快速成长。专注于推动游戏、AI、3D、流媒体、平台、游戏技术、XR等领域的创新。a16z联合创始人马克·安德森(MarcAndreessen)在speedru
- 基于RWA 与 AI-Agent 协同的企业数字化生态构建
leijiwen
人工智能
在当前数字经济高速发展的背景下,企业数字化转型已成为提升竞争力和创新能力的必由之路。以实体零售与文旅行业为代表的传统产业,正通过现实世界资产(RWA)数字化与人工智能代理(AI-Agent)的协同应用,构建全新的数字生态系统。正如“无数据不基础、无token不可信、无AI不产品、无产业不应用”这一理念所强调的,数字化生态的建立必须依托数据、信任机制、智能技术以及产业深度融合,才能实现真正的转型升级
- CCF CSP 第30次(2023.05)(2_矩阵运算_C++)(暴力破解)(矩阵相乘)
Dream it possible!
CCFCSP认证矩阵c++算法
CCFCSP第30次(2023.05)(2_矩阵运算_C++)题目背景:题目描述:输入格式:输出格式:样例输入样例输出:样例解释:子任务:提示:解题思路:思路一(暴力破解):代码实现代码实现:部分代码解读时间限制:5.0s空间限制:512.0MB题目背景:Softmax(Q×KT/√d)×V是Transformer中注意力模块的核心算式,其中Q、K和V均是n行d列的矩阵,KT表示矩阵K的转置,×表
- 事件驱动架构模型_模型驱动架构简介
cusi77914
大数据编程语言python机器学习人工智能
最近几个月,许多组织已开始将注意力集中在模型驱动的体系结构(MDA)1上,作为应用程序设计和实现的一种方法。由于几个原因,这是一个非常积极的发展。MDA鼓励在软件开发过程中有效使用系统模型,并在创建系统系列时支持重用最佳实践。根据对象管理组(OMG)的定义,MDA是一种组织和管理由自动化工具和服务支持的企业体系结构的方法,用于定义模型和促进不同模型类型之间的转换。尽管OMG定义的用于创建和发展企业
- 电子电气架构 --- 汽车行业技术变革
车载诊断技术
汽车行业架构网络协议数据库汽车gateway
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- 算力网络技术创新驱动生态协同发展
智能计算研究中心
其他
内容概要算力网络作为数字经济发展的核心基础设施,正经历从单一性能提升向体系化技术协同的范式转变。当前技术创新主要聚焦三大维度:在架构层面,通过异构计算、量子计算与神经形态计算的融合,突破传统芯片制程限制;在调度层面,依托分布式计算与流批处理技术,实现跨边缘节点、工业互联网平台与超算中心的资源动态编排;在生态层面,围绕能效管理、安全标准与算法优化构建全链条能力,支撑金融风险评估、基因测序等高复杂度场
- RTX4090性能释放与优化全攻略
智能计算研究中心
其他
内容概要作为NVIDIAAdaLovelace架构的巅峰之作,RTX4090凭借24GBGDDR6X显存与16384个CUDA核心,重新定义了4K光追游戏的性能边界。本文将从硬件特性与软件优化双重视角切入,系统解析其性能释放路径:首先通过3DMarkTimeSpyExtreme压力测试数据(99.3%稳定性得分)验证基础算力;其次结合DLSS3.0帧生成技术与Reflex低延迟模式,实测《赛博朋克
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- 2024年最佳Todo清单APP:从效率到协作全覆盖
任务管理工具todolist
大量研究表明,人类大脑并不擅长同时处理多项任务。在多任务处理时,大脑需要频繁切换注意力,每次切换都会消耗时间和精力,这种现象被称为“切换成本”(SwitchingCost)。心理学家Rubinstein、Meyer和Evans在2001年的研究中指出,任务切换会导致思维停顿,延长完成任务的时间。他们发现,在处理复杂任务时,效率可能下降高达40%。此外,Cowen(2001)的研究进一步指出,人类的
- 从零到一:Transformer模型的原理与实战之旅
樽酒ﻬق
AItransformer深度学习人工智能
目录从零到一:Transformer模型的原理与实战之旅1.Transformer原理简介1.1什么是Transformer?1.2自注意力机制的核心1.3Transformer的结构2.实战:构建Transformer模型2.1任务目标2.2环境准备2.3数据准备2.4模型构建2.5模型训练3.推理实战:完整示例与输出结果3.1完整推理代码3.2代码解析4.原理与代码的结合4.1自注意力机制的实
- LL(1)文法与左递归
Vitalia
#形式语言与自动机LL(1)文法左递归编译原理
没有超群的记忆力和过目不忘的能力,担心自己忘了,就写下来好啦。考虑如下文法,S->SA|AA->a如何说明该文法是LL(1)的?我们首先要明确,LL(1)是文法的一种性质,它描述的是这样一种文法,Predictiveparsers,thatis,recursive-descentparsersneedingnobacktracking,canbeconstructedforaclassofgram
- 仍未接入DeepSeek,字节有自己的计划!
蜂耘
人工智能业界资讯ai
DeepSeek如烈火般蔓延,用深度思考之火席卷整个AI界,一时间,与AI相关的产品陆陆续续接入DeepSeek,百度、腾讯等大厂虽有自研AI,却依旧毫不犹豫地投入DeepSeek怀抱。君不见,腾讯接入DeepSeek后,短期内股价疯涨两次,这是由于DeepSeek强化了AI产品的竞争力,大家认为DeepSeek的技术与腾讯的用户基础结合,能碰撞出AI应用变现加速的火花。在腾讯元宝接入DeepSe
- 「 机器人 」扑翼飞行器通过总气动力控制四自由度运动方法
Robot_Starscream
「机器人学」机器人人工智能算法
一、前言在扑翼飞行中,总气动力(TotalAerodynamicForce)是指扑翼在运动过程中受到的所有空气动力作用的合力。它是由以下两种主要力的合成结果:1.升力(Lift,):垂直于空气流方向的力,用于支持飞行器(或生物)的重量。2.阻力(Drag,):平行于空气流方向的力,用于抵抗前进的运动。二、总气动力的物理意义总气动力F_{uk}的物理意义在于描述了扑翼在不同运动状态下所受到的气动力合
- DeepSeek 面试题精选
CarlowZJ
DeepSeek
以下是针对DeepSeek面试的精选问题及解答,涵盖技术原理、模型架构、训练方法和应用场景等方面,供面试准备参考:一、DeepSeek模型架构与技术原理1.请简述DeepSeek-V3模型的总体架构和主要创新点。架构:DeepSeek-V3基于混合专家系统(MoE)架构,包含2048个领域专家模型,通过门控网络动态分配查询请求。创新点:使用多头潜在注意力(MLA)技术,通过低秩压缩降低KV缓存需求
- 如何打造TikTok矩阵:多账号管理与内容引流的高效策略
m0_74891046
矩阵
随着短视频平台的崛起,TikTok成为了全球范围内最具影响力的社交平台之一。在这个平台上,通过精确的内容营销和运营策略,许多创作者和品牌成功实现了曝光、粉丝增长和变现。为了提高运营效率,许多专业的内容创作者和团队开始使用TikTok矩阵系统,借助多个账号同时运营和引流,进一步放大曝光效果。本文将介绍如何打造一个高效的TikTok矩阵,帮助你利用多个账号进行精准引流,提升内容创作和运营效率,并实现变
- 电子电气架构 ---常见车规MCU安全启动方案
车载诊断技术
EV(电动汽车)常规知识必备车载电子与软件框架车载电子电气架构架构单片机安全人工智能AI在整车产品领域的应用
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round