- AI原生应用微服务监控:Prometheus+Grafana实战
AI原生应用开发
AI-native微服务prometheusai
AI原生应用微服务监控:Prometheus+Grafana实战关键词:微服务监控、Prometheus、Grafana、AI应用、指标收集、可视化告警、云原生摘要:本文将深入探讨如何为AI原生应用构建完整的微服务监控系统。我们将从基础概念出发,详细介绍Prometheus的指标收集机制和Grafana的可视化能力,并通过实际案例展示如何搭建完整的监控解决方案。文章包含详细的配置示例、架构图解和最
- 机器学习模型监控警报系统设计:Prometheus+Evidently 实战教程
大熊计算机
机器学习prometheus人工智能
1.系统架构设计:从数据采集到智能告警(1)监控系统核心组件交互图预测请求监控指标告警规则通知渠道预测结果质量报告时序数据模型服务PrometheusExporterPrometheusServerAlertmanager邮件/Slack/WebhookEvidently服务可视化仪表盘图解:系统采用双引擎架构,Prometheus负责基础监控指标采集与告警触发,Evidently执行深度模型分析
- Matplotlib 库来可视化频谱泄漏和加窗的效果
Mark White
matplotlib
前言很多朋友学习音频技术的时候,不理解这个频谱泄漏是什么,我们这次写个小代码直观地感受一下代码演示:频谱泄漏与加窗我们将生成一个简单的正弦波信号,然后分别用**不加窗(矩形窗)和加窗(汉明窗)**的方式对其进行傅里叶变换,并对比它们的频谱图。你会清晰地看到加窗如何减少了频谱泄漏。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.fftimpo
- Python可视化环境:Matplotlib_Seaborn+Conda配置
Python编程之道
Python人工智能与大数据Python编程之道pythonmatplotlibcondaai
Python可视化环境:Matplotlib/Seaborn+Conda配置关键词:Python可视化、Matplotlib、Seaborn、Conda、环境配置摘要:本文主要探讨了如何利用Conda来配置Python可视化所需的Matplotlib和Seaborn环境。首先介绍了Python可视化的背景和重要性,明确目标读者为想要学习Python可视化的初学者和有一定基础的开发者。接着详细解析了
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- 稳定币独角兽:Circle
InnoLink_1024
区块链稳定币区块链
Circle公司背景分析CircleInternetFinancial(以下简称Circle)是一家成立于2013年的美国金融科技公司,总部位于波士顿,由JeremyAllaire和SeanNeville联合创立。公司最初专注于点对点加密货币支付和交易,后转型为全球领先的稳定币发行机构,其核心产品是与美元1:1挂钩的USDCoin(USDC),目前为全球第二大稳定币,仅次于Tether的USDT。
- 深入详解:决策树算法的概念、原理、实现与应用场景
猿享天开
算法决策树机器学习
深入详解:决策树算法的概念、原理、实现与应用场景决策树(DecisionTree)是机器学习中一种直观且广泛应用的监督学习算法,适用于分类和回归任务。其树形结构易于理解,特别适合初学者。本文将从概念、原理、实现到应用场景,全面讲解决策树,并通过流程图和可视化示例增强理解,通俗易懂,帮助小白快速掌握决策树算法相关知识。1.决策树的概念1.1什么是决策树?决策树通过一系列条件判断(决策节点)将输入数据
- 区块链技术概述:从比特币到Web3.0
闲人编程
Python区块链50讲区块链web3python元宇宙比特币安全
目录区块链技术概述:从比特币到Web3.0引言:数字革命的下一篇章1.区块链技术基础1.1区块链定义与核心特征1.2区块链数据结构可视化2.比特币:区块链的开端2.1比特币的核心创新2.2比特币交易生命周期3.以太坊与智能合约革命3.1以太坊的核心创新3.2智能合约执行流程4.Web3.0:互联网的新范式4.1Web3.0的核心特征4.2Web3技术栈5.Python实现简易区块链系统5.1区块类
- 推荐使用:Vue-Cron —— 简易CRON表达式生成器
乌昱有Melanie
推荐使用:Vue-Cron——简易CRON表达式生成器项目地址:https://gitcode.com/gh_mirrors/vu/vue-cronVue-Cron是一款专为Vue.js和Element-UI设计的高效、易用的CRON表达式生成插件。它能帮助开发者轻松创建和管理定时任务策略,提供直观的界面和完善的国际化支持。项目介绍Vue-Cron提供了一个简洁的交互界面,让用户能够通过可视化的操
- DeepSeek-V3混合精度推理(FP8/BF16)原理与实战全解析
CarlowZJ
DEEPSEEK-V3
目录摘要混合精度推理的背景与意义DeepSeek-V3混合精度架构设计FP8与BF16核心原理详解混合精度推理核心实现实践案例:FP8权重转BF16与推理部署常见问题与注意事项最佳实践与扩展建议总结参考资料附录:可视化图表1.摘要本文系统梳理DeepSeek-V3在FP8/BF16混合精度推理方面的架构设计与工程实现,结合源码与实际案例,帮助开发者深入理解其混合精度推理原理、工程落地方法与性能优化
- 基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
神经网络15044
仿真模型算法机器学习pythoncnnlstm
以下是一个基于PythonAnaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案。内容涵盖数据预处理、模型构建、训练优化、预测可视化和结果分析等核心环节,代码与文字说明共计超过6000字。基于CNN-LSTM的碳交易价格预测系统设计与实现一、项目背景与目标1.1碳交易市场概述碳交易作为应对气候变化的重要市场机制,其价格波动直接影响企业减排决策。准确预测碳价(CarbonEmis
- Android Studio Profiler:性能优化的超能侦探
你一身傲骨怎能输
Android操作系统androidstudio性能优化android
文章摘要AndroidStudioProfiler是开发者的"超级监工",通过可视化方式监测APP性能问题:CPU侦探:记录方法调用栈与耗时,定位卡顿根源,如同工厂摄像头追踪机器效率;内存侦探:监控对象分配与GC活动,揪出内存泄漏,像仓库管理员清点过期库存;网络侦探:分析请求速度与数据量,优化传输效率,堪比物流中心调度运输车辆。三大工具协同工作,帮助应用实现更流畅、稳定、高效的运行表现。(注:能耗
- 数据与ChatBI
ChatBI的核心是让用户用自然语言(如“帮我看看这周的销售额走势”)直接获取数据分析结果,无需懂SQL或技术细节。整个过程就像AI“听懂”你的话、理解需求、生成查询、验证执行、并可视化展示结果。首先,ChatBI的系统架构图展示了整个流程的关键步骤。它从用户输入开始,经过多个AI模块处理,最终输出交互式报表。现在来一步步解析ChatBI的工作流程。1.语音/文字输入——解放双手的起点这是什么?一
- ECharts 数据集(Dataset)
沐知全栈开发
开发语言
ECharts数据集(Dataset)引言ECharts是一个使用JavaScript实现的开源可视化库,它能够将数据通过丰富的图表形式展示出来。在ECharts中,数据集(Dataset)是一个非常重要的概念,它负责存储图表所需的数据。本文将详细介绍ECharts数据集(Dataset)的相关知识,包括其定义、作用、类型以及使用方法。数据集的定义数据集(Dataset)是ECharts中用于存储
- 创意Python爱心代码分享的技术文章大纲
hshaohao
pygamepythonjavaphpc++c语言javascript
创意Python爱心代码分享的技术文章大纲引言介绍Python在创意编程中的应用,特别是图形和数学可视化方面的潜力。提及爱心代码作为经典示例,激发读者兴趣。基本爱心图案生成使用数学公式和简单图形库绘制基本爱心形状。示例代码利用matplotlib或turtle库实现。importnumpyasnpimportmatplotlib.pyplotaspltt=np.linspace(0,2*np.pi
- Gen AI:重塑未来的创造力工具箱
一杯酒zpy
人工智能
目录页一、GenAI工具箱助力大学生涯1.通用GenAI工具2.GenAI科研辅助1.文献阅读与论文写作2.数据分析与可视化3.AI翻译工具二、GenAI办公、学习助手1.PPT制作2.表格制作3.AI思维导图4.AI办公5.AI图像处理6.AI视频处理7.AI音频处理8.AI编程工具9.AI搜索引擎说明:网盘资源密码获取:关注微信公众号【土木岛】,后台回复文件框中提示的对应关键词自动发送。点击查
- 几款实用的开发软件SQLyog/xftp/redis可视化工具无需激活
qq_21422587
mysqlSQLyogredis可视化ftp
SQLyog可视化界面:提供直观的GUI操作数据库,减少命令行使用跨平台支持:支持Windows和Linux操作系统强大的查询功能:内置SQL查询编辑器,支持语法高亮和自动完成数据导入导出:支持多种格式的数据导入导出数据库同步:可以比较和同步不同数据库之间的结构和数据可视化工具:提供表结构设计器、视图设计器等可视化工具SSH隧道支持:可以通过SSH安全连接远程数据库SQLyog如有需要请自行下载x
- 使用VTK还是OpenGL集成到qt程序里哪个好?
奇树谦
VTKqt开发语言
在Qt程序中集成VTK与OpenGL:选择哪个更好?在Qt程序中实现三维可视化时,开发者常常面临一个选择:是使用VTK(VisualizationToolkit)还是OpenGL(OpenGraphicsLibrary)。这两种技术各有优缺点,适用于不同的应用场景。本文将详细探讨它们的特点、优缺点以及如何选择适合你的项目的技术。一、VTK与OpenGL简介(一)VTK(VisualizationT
- 【蓝图】p36-p39蓝图通信、自定义事件、类型转换、角色移动速度、触发加速
叫我六胖子
UE4入门教程ue4
p36-p39蓝图通信、自定义事件、类型转换、角色移动速度、触发加速p36蓝图通信和自定义事件蓝图通信自定义事件p37类型转换加速功能类型转换p38创建自定义事件p39实现触发加速p36蓝图通信和自定义事件蓝图通信在UnrealEngine(UE)中,蓝图通信是指蓝图之间的信息传递和交互过程。蓝图是UE中用于创建游戏逻辑和功能的可视化编程工具,而蓝图通信允许不同蓝图之间发送和接收数据。蓝图通信可以
- 流程管理系统技术选型避坑指南(含开源)
Alex艾力的IT数字空间
开源java网络中间件gitidevscode
一、开源流程引擎方案以下为基于BPMN2.0标准的开源方案,覆盖轻量级到企业级需求:引擎名称核心特点适用场景技术栈社区活跃度官网Camunda-完整BPMN/DMN/CMMN支持-可视化流程设计器-分布式架构支持高并发复杂业务流程(金融、制造业)Java/SpringBoot/微服务高camunda.comFlowable-Activiti分支,性能优化-支持云原生部署-与Spring生态深度集成
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 高中成绩可视化平台开发笔记
一半不眠次日si记
笔记pyqtnumpypandasmatplotlibui数据可视化
高中成绩可视化平台(1)一、项目概述本系统是一个基于PyQt5和Matplotlib的高中成绩数据可视化分析平台,旨在帮助教师快速了解学生成绩分布、班级对比、学科表现等关键指标。平台支持文科与理科的数据切换,并提供多个维度的图表展示和交互式操作。核心功能:文科/理科数据动态切换四个核心分析页面(总览、学科分析、班级分析、排名分析)图表联动刷新机制表格与图表双向绑定自定义样式与视觉美化二、技术选型技
- Gitea 服务器监控面板的搭建
shengyin714959
笔记最高笔记服务器gitea数据库
Prometheus是一个开源的服务监控系统和时序数据库。Grafana是一个可视化的数据分析面板,它可以从Prometheus中查询时序数据,绘制漂亮的数据图表。本文作者在实践中使用Prometheus抓取和存储Gitea服务器的运行数据,并基于Grafana提供的开源数据面板创建了一个自己服务器的Gitea性能监控面板。工作原理为了更清晰地理解Prometheus的工作原理,我在下方列出了Pr
- KVM虚拟化CPU拓扑解密:核心数越多性能就越强?真相颠覆认知!
来自于狂人
后端云计算
在虚拟化环境中,CPU配置如同精密仪器的齿轮系统,错误的拓扑设计可能导致30%以上的性能损失!本文将用可视化方式揭示KVM中CPU拓扑的深层奥秘。一、CPU拓扑核心概念图解层级架构解析:物理服务器Socket1Socket2Core1Core2Core1Core2Thread1Thread2Thread1Thread2Thread1Thread2Thread1Thread2Socket(插槽)物理
- 国产中子输运与辐射防护常用建模计算可视化软件推荐
Dahoo009
TopMCSuperMC蒙特卡罗方法MCNPGeant4
以下是国产中子输运与辐射防护领域主流的建模计算与可视化软件推荐,覆盖自主研发的蒙特卡洛工具、确定论方法平台及专用辅助软件,满足科研、核能与医疗等领域的安全分析需求:️一、核心国产模拟软件1.蒙特卡洛中子输运工具软件名称开发单位特点适用场景TopMC/SuperMC(超级蒙特卡洛)中子科学研究院(FDSTeam)✅自主可控核设计软件✅支持中子/光子/质子耦合输运✅智能建模+云平台集成✅兼容MCNP输
- Mac电脑 数据恢复工具 Disk企业版
2501_92605049
macosmac数据恢复
Disk一款专为MacOS原生设计的Mac数据恢复工具:使用RecoveryVault轻松保护您的文件免遭意外删除,并从Mac磁盘恢复丢失的数据。支持大多数存储设备、文件类型和文件系统。您可以从iPhone和Android设备恢复已删除的文件!DiskDrill提供有用且免费的磁盘管理工具,例如重复文件查找器、字节到字节备份、磁盘清理和空间可视化、可启动数据恢复驱动器、磁盘运行状况监控等。原文地址
- 《C#上位机开发从门外到门内》3-5:基于FastAPI的Web上位机系统
百锦再@新空间
上位机开发fastapi前端数据库centosoracle关系型安全
文章目录一、项目概述二、系统架构设计三、前后端开发四、数据可视化五、远程控制六、系统安全性与稳定性七、性能优化与测试八、实际应用案例九、结论随着互联网技术的快速发展,Web上位机系统在工业自动化、智能家居、环境监测等领域的应用日益广泛。基于FastAPI或Flask的Web上位机系统,凭借其高效、灵活和易于扩展的特点,成为当前研究和应用的热点。本文将详细探讨基于FastAPI和Flask的Web上
- 【机器学习第二期(Python)】优化梯度提升决策树 XGBoost
WW、forever
深度学习原理及代码实现机器学习python决策树
优化梯度提升决策树XGBoost一、XGBoost简介二、原理详解2.1基础思想:改进版GBDT2.2目标函数2.3二阶泰勒展开优化2.4树结构优化三、XGBoost实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考梯度提升决策树GBDT的原理及Python代码实现可参考另一博客-【机器学习第一期(Python)】梯度提升决策树GBDT。XGBoost(ExtremeGrad
- 解锁ChatGPT高级玩法:模块化提示词库开发指南
LCG元
大模型chatgpt
目录一、引言:为什么需要模块化提示词库?二、模块化提示词库设计原理2.1核心架构2.2模块功能说明⚙️三、模块化提示词库开发实践(附Python源码)3.1环境配置3.2模块化提示词生成器3.3提示词组合引擎四、可视化流程设计4.1模块化提示词工作流4.2可视化编辑界面设计五、应用案例:电商客服提示词库5.1模块配置示例5.2效果对比六、总结与资源一、引言:为什么需要模块化提示词库?传统单一提示词
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文