- Caffe学习系列——工具篇:计算数据集的图像均值
Solomon1588
计算机视觉CVCaffe深度学习深度学习Caffe数据预处理特征标准化
本系列文章介绍深度学习框架Caffe及其实践,本文主要介绍Caffe的实用工具——compute_image_mean计算图像均值.1.图像预处理——零均值化数据预处理在深度学习中非常重要,数据预处理中,标准的第一步是数据归一化。特征归一化常用的方法包含如下几种:简单缩放逐样本均值消减(也称为移除直流分量)特征标准化(使数据集中所有特征都具有零均值和单位方差)特征标准化指的是(独立地)使得数据的每
- Caffe学习 (五):SSD源码解读ssd_pascal.py
QZX-light
Caffe学习系列Caffe
参考博客:https://blog.csdn.net/xunan003/article/details/79089280from__future__importprint_functionimportcaffefromcaffe.model_libsimport*fromgoogle.protobufimporttext_formatimportmathimportosimportshutilim
- caffe学习(1)------windows下基于GPU配置
lishanlu136
caffecaffe
最近准备用caffe做图片的分类,可配置caffe就让我折腾了大半个月,一直配置不成功,最后还是参考官网的tutorial才配置成功,于是决定把配置的过程写下来,如果后面有朋友配置caffe遇到什么问题,还可以参考参考。首先贴出官方的配置caffe的工程:https://github.com/BVLC/caffe/tree/windows,注意,这可是基于Windows系统的,因为我的电脑是win
- caffemodel特征可视化_Caffe学习笔记4图像特征进行可视化
weixin_39824801
caffemodel特征可视化
Caffe学习笔记4图像特征进行可视化本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/可以算是对它的翻译的总结吧,它可以算是学习笔记2的一个发展,2是介绍怎么提取特征,这是介绍怎么可视化特征1、准备工作首先
- Caffe学习:build/tools/convert_imageset
jiarenyf
caffecaffe
caffe/build/tools/convert_imageset用于将image图片转化为lmdb(leveldb)格式编写命令,实现图片格式转化:#!bin/sh#工具目录TOOLS_ROOT=caffe/build/tools#train_datas存放训练图片#label_train.txt保存图片标签#shuffle参数用于打乱图片读取顺序#train_db文件夹(不可手动新建)存放转
- Caffe学习之——caffe.cpp源码解析
ciky奇
caffecaffe.cpp
本文主要解析caffe源码中/tools/caffe.cpp文件,此文件是caffe程序的入口main函数,包含了命令行参数代码实现,如tain,test,time等。caffe结构请参考:https://blog.csdn.net/c20081052/article/details/80585888caffe命令行参数请参考:https://blog.csdn.net/c20081052/art
- caffe学习(1):多平台下安装配置caffe
weixin_34238642
操作系统运维git
如何在centos7.3上安装caffe深度学习工具有好多朋友在安装caffe时遇到不少问题。(看文章的朋友希望关心一下我的创业项目趣智思成)今天测试并整理一下安装过程。我是在阿里云上测试,选择centos7.3镜像。先安装epel源1yuminstallepel-release安装基本编译环境12yuminstallprotobuf-develleveldb-develsnappy-develo
- Caffe学习笔记1-安装以及代码结构
baobei0112
CNN卷积神经网络
Caffe学习笔记1-安装以及代码结构ByYuFeiGan2014-12-09更新日期:2014-12-09安装按照官网教程安装,我在OSX10.9和Ubuntu14.04上面都安装成功了。主要麻烦在于gloggflagsgtest这几个依赖项是google上面的需要。由于我用Mac没有CUDA,所以安装时需要设置CPU_ONLY:=1。如果不是干净的系统,安装还是有点麻烦的比如我在OSX10.9
- caffe学习笔记--写一个运行caffe.cpp的makefile
thystar
caffe学习
之前因为有caffe的项目要放到服务器上面,但是其实不需要在服务器上面重新安装caffe,所以写了个makefile.这里改写了个简单的,比较容易读的,只运行caffe.cpp,如果由其他的,可以按照makefile的规则添加就好。首先,还是要说一下关于caffe的依赖,参考之前的两篇博客:http://blog.csdn.net/thystar/article/details/51179064和
- caffe学习笔记10.1--Fine-tuning a Pretrained Network for Style Recognition(new)
thystar
caffe学习
在之前的文章里,写过一个关于微调的博客,但是今天上去发现这部分已经更新了http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb,因此补一篇最新的,关于微调,前面的文章由讲,参考http://blog.csdn.net/thystar/article/details/5067553
- caffe学习笔记(11):多任务学习之HDF5Data类型数据集生成
guyunee
deeplearningmatlabobjectdetection数据标签caffe深度学习
最近开始研究多任务学习(multi-tasklearning,MTL),先分享给大家:本文主要讲述数据集的建立,HDF5Data类型用于处理多标签数据,在网络中定义为:layer{name:"data"type:"HDF5Data"top:"data"top:"label"include{phase:TRAIN}hdf5_data_param{source:"list_train.txt"batc
- Caffe学习:Forward and Backward
jiarenyf
caffecaffe
原文forwardandbackwardpasses(前向迭代和反向迭代)是Net最基本的成分。下面以简单的logisticregressionclassifier(逻辑回归分类器)为例。ForwardPass(前向迭代)利用给定的输入,根据模型设定的函数,计算出输出。Thispassgoesfrombottomtotop(数据流向从bottom到top)。数据x通过一个innerproductl
- Ubuntu14.04下配置Caffe+OpenCV2.4.10+CUDA7.5+cuDNN5.1.10
cuihaolong
3DPrint系统配置
1.CUDA配置与Tensorflow,Keras等深度学习框架一样的配置方法,一次配置可以重用,其他基础软件和依赖项亦可参考:Caffe学习笔记2--Ubuntu14.0464bit安装Caffe(GPU版本)Ubuntu14.04+Caffe+Cuda7.5+Opencv3.0安装教程Caffe+Ubuntu14.0464bit+CUDA6.5配置说明Caffe搭建:Ubuntu14.04+C
- Caffe学习笔记(一): 训练和测试自己的数据集
__Sunshine__
笔记Pythoncaffe训练数据集计算机视觉
1数据准备首先在caffe根目录下建立一个文件夹myfile,用于存放数据文件和后面的caffe模型相关文件。然后在myfile文件夹下建立build_lmdb和datatest两个文件夹,其中build_lmdb文件夹用于存放生成的lmdb文件,datatest文件夹存放图片数据。在datatest下主要有2个文件夹和2个.sh文件和2个.txt文件,其中train文件夹中存放待训练的图片,va
- Caffe学习(三)Caffe模型的结构
遍地流金
Caffe学习
一总体结构在caffe中,解决一个问题首先应该定义一个slover,反应到mnist例程中也就是lenet_solver.prototxt。该slover主要包括两部分,(1)为网络模型model,(2)为该模型参数的具体optimization方法及参数。model主要由各种layer组成,主要包括数据相关的DataLayer,图像滤波变换相关的VisionLayer,非线性激活函数Activa
- caffe数据文件lmdb训练神器digits
hi我是大嘴巴
denny的学习专栏徐其华博客园首页新随笔联系管理订阅随笔-145文章-0评论-1085Caffe学习系列(21):caffe图形化操作工具digits的安装与运行经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化。如果还没有学会的,请自行细细阅读:caffe学习系列:http://www.cnblogs.com/den
- Caffe学习总结(一)——初识caffe
不系之舟913
深度学习caffe深度学习机器学习框架
深度学习在当前情况下可以用一个字来形容“火”,目前项目中使用到了常用的机器学习算法,在使用过程中发现图像的特征提取成为识别的瓶颈,无意中了解到caffe,可以很好的解决特征提取的问题。于是想尝试一下caffe的威力。初识caffe,就习惯性了想了解下作者,发现设计作者是贾杨清,终于发现一个牛逼的框架是我们中国人做的啦!于是很兴奋,很想深入的进行学习,希望能在工作中使用起来。1、caffe的由来到一
- 深度学习之----caffe
Steven_ycs
本文主要讲解caffe的整个使用流程,适用于初级入门caffe,通过学习本篇博文,理清项目训练、测试流程。初级教程,高手请绕道。我们知道,在caffe编译完后,在caffe目录下会生成一个build目录,在build目录下有个tools,这个里面有个可执行文件caffe,如下图所示:有了这个可执行文件我们就可以进行模型的训练,只需要学会调用这个可执行文件就可以了,这便是最简单的caffe学习,不需
- caffe学习系列二:源码深入解析-单步跟踪调试指南
singularpt
为了更好的学习caffe,我们利用上节安装好的环境,进行单步调试,以窥caffe全貌。准备工作:要在vs2013中单步跟踪调试caffe,需要配置caffe工程,打开【属性】-【调试】-【命令行参数】中加入输入参数。如下配置:image.png先贴一张caffe的整体处理流程:image.png一、函数入口众所周知,caffe由c++写的,而c++的入口函数为main,我们在caffe.cpp文件
- Ubuntu 14.04下编译OpenPose
crazyhank
OpenPose是CMU开发的一个开源人体姿态检测模型,github地址为:https://github.com/CMU-Perceptual-Computing-Lab/openpose,下面为在ubuntu14.04版本上编译的过程下载源码由于openpose依赖于第三方的caffe学习框架,所以在gitclone一定要加上"--recursive"选项,如下所示:#gitclone--rec
- Caffe学习笔记6:过程小结
Zz鱼丸
之前写的学习笔记1用两种方法进行预测,今天发现有点不对。下面进行分析总结:先来看看Classifier的源代码#!/usr/bin/envpython"""ClassifierisanimageclassifierspecializationofNet."""importnumpyasnpimportcaffeclassClassifier(caffe.Net):"""Classifierexte
- Caffe Cifar10模型测试及可视化
不会积
本文主体来自[Caffe学习系列(17):模型各层数据和参数可视化],加了一点自己的注释(http://www.cnblogs.com/denny402/p/5105911.html)先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。#加载必要的库importnumpyasnpimportmatplotl
- Caffe学习系列(3):视觉层(Vision Layers)及参数
weixin_33850890
matlab人工智能
所有的层都具有的参数,如name,type,bottom,top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数本文只讲解视觉层(VisionLayers)的参数,视觉层包括Convolution,Pooling,LocalResponseNormalization(LRN),im2col等层。1、Convolution层:就是卷积层,是卷积神经网络(C
- Caffe学习之一:Caffe的配置和编译
sherry_gp
程序软件安装
最近,在学习deeplearning,使用的工具就是caffe,比较容易上手,不啰嗦了,先说环境的配置和编译。系统的平台为win10+matlab2014b+vs2013.在开始之前,要安装cuda的驱动,我使用的cuda7.5这个版本(为了和caffe里面使用的版本同步)。首先,在https://github.com/happynear/caffe-windows下载caffe和以及此页面上提供
- 【深度学习框架Caffe学习与应用】第四课 Caffe可视化工具
soldier123333
[caffe学习笔记]
1.首先准备pycaffe环境输入一下命令:2.网络可视化的工具2.1在caffe中,有一个专门用于画网络结构图的py文件:caffe/tools/draw_net.py2.2也可以通过在线可视化工具,网址如下:http://ethereon.github.io/netscope/#/editor2.caffemodel的可视化,需要先把代码看明白,这里不写了3.特征图的可视化4.loss和acc
- 【深度学习框架Caffe学习与应用】 第十一课
soldier123333
[caffe学习笔记]
1.车辆检测实践:使用Caffe训练的深度学习模型做目标检测——以车辆检测为例有关文件都放在以下文件夹中:对vehicle_detetc.cpp进行编译:编译之前,需要修改一下代码中的文件路径:我刚开始先编译之后,才修改的源文件,所以运行的时候,出现下面错误:只要修改完路径之后,重新编译就好结果如下图所示:效果不好,有误检
- 【深度学习框架Caffe学习与应用】第五课 自定义神经层和数据输入层
soldier123333
[caffe学习笔记]
一、自定义神经层1.创建新定义的头文件,目录在caffe/include/caffe/layers/my_neuron_layer.hpp我复制了conv_layer.hpp文件,然后在该文件的内容上进行更改如果只是需要CPU方法,可以注释掉forward_gpu和backward_gpu修改对照内容如下(左侧是conv_layer.hpp,右侧是my_neuron_layer.hpp):2.创建
- 【深度学习框架Caffe学习与应用】第三课 使用训练好的模型
soldier123333
[caffe学习笔记]
1.均值文件将所有训练样本的均值保存为文件。首先将计算均值文件的caffe工具compute_image_mean放到当前目录:caffe/test/mnist/下面,之后运行如下命令:这样,我们的均值文件就生成了2.改写deploy文件(以mnist为例)(略过)3.使用修改后的mnist的deploy文件,输入一张图片,输出分类结果首先我们写了一个test_mnist.cpp文件,先进行编译,
- Caffe学习笔记11:Ubuntu 16.04 中 caffe 编译出现的错误——fatal error: hdf5.h: 没有那个文件或目录
weixin_41774576
Caffe
step1:cd/usr/lib/x86_64-linux-gnusudoln-slibhdf5_serial.so.8.0.2libhdf5.sosudoln-slibhdf5_serial_hl.so.8.0.2libhdf5_hl.sostep2:changeMakefile.config//打开Makefile.config将下面的INCLUDE_DIRS:=$(PYTHON_INCLUD
- caffe学习-代码阅读DataLayer
华山汉灵
编程-深度学习框架
以下摘录自《深度学习轻松学》冯超为了能够尽可能地提高训练速度,DataLayer采用了异步准备数据的形式,数据读人的工作和模型训练的工作在各自的线程中进行,相互独立并不依赖。当模型需要数据时,只需要将数据复制到指定的内存中即可。从lmdb数据库中,Cusror逐一获取数据,然后构成batch,经过transform变换后,是实际训练用的data.最上面的虚线框是DataReader类,负责从DB中
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod