1 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
2 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
3 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
4 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
redis数据库属于内存数据库 他的数据是运行在内存中 内存是不会存储数据 在内存断电或者进程退出后数据就会消失 为防止进程退出或意外断电 需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。
除此之外 还要将持久化的数据做一个容灾备份
RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。
1 用周期性的方式将数据存放到硬盘中实现持久化 类似快照 将数据将快照的形式按不同时间点封装到硬盘上存储
2 用日志记录操作 崩溃后利用日志恢复 通过在指定的时间间隔内将内存中的数据集快照写入磁盘,实际操作过程是fork一个子进程,先将数据集写入临时文件,写入成功后,再替换之前的文件,用二进制压缩存储
1 和ROB不同 AOF将redis执行过的所有写、删(查询操作不会)指令记录下来,在下次redis重新启动时,只要把这些写指令从前到后再重复执行一遍,就可以实现数据恢复了。
2 日常写操作的时候不触发写,只有手动提交save命令,或者是shutdown关闭命令时,才触发备份操作。
在ROB和AOF同时使用时,如果redis重启的话,则会优先采用AOE方式来进行数据恢复,这是因为AOF方式的数据恢复完整度更高。
save和bgsave都会生成RDB文件
save会将redis服务器的进程全部沾满 此时redis服务器无法完成其他的任务 直到RDB文件创建完成 才可以完成其他的任务
bgsave也会生成RDB文件 由派生一个子进程去生成RDB文件 主进程会继续完成其他的任务 但是不会接受客户端新的请求 原有的请求会继续执行
二者的区别就是save会完全阻塞服务器 什么请求都不会执行 bgsave只有子进程fork会阻塞服务器 主进程不受影响 所以在生产环境中基本不会使用save
在自动触发RDB持久化 redis自己也会选择使用bgsave和save 选择基于配置文件
通过save m n,指定当m秒内发生n次变化时,会触发bgsave
vim /etc/redis/6379.conf
在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
执行shutdown命令时,自动执行rdb持久化。
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis(AOF关闭的时候)载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败
RDB是将文件按时间点封装成一个快照 然后进行2进制压缩 AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。现在AOF是主流的持久化方案
AOF默认关闭 开启的时RDB持久化 需要在配置文件开启
vim /etc/redis/6379.conf
/etc/init.d/redis_6379 restart
由于需要记录Redis的每条写命令,因此AOF不需要触发 主要有三个执行过程
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的 write 函数和 fsync 函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:(vim /etc/redis/6379.conf ----》 729行 )
appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置
Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
文件重写是指定期重写AOF文件,减小AOF文件的体积。
AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件
不会对旧的AOF文件进行任何读取、写入操作
对于AOF持久化来说,文件重写虽然是一个好的方法,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
文件重写之所以可以压缩 是因为将一些无效的操作和过期的数据不写入文件 多条命令可以合成一个以减小体积
文件重写的触发,分为手动触发和自动触发:
手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
vim /etc/redis/6379.conf
重写的步骤如下
Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
使用新的AOF文件替换老文件,完成AOF重写。
当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。
redis数据都是跑在内存中 所以在对内存的监控是尤为重要
检测redis的内存状态
redis-cli
info memory
操作系统分配的内存值used_memory_rss除以Redis使用的内存值used_memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)
跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,并重启 Redis 服务器。
内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
避免内存交换发生的方法:
针对缓存数据大小选择安装 Redis 实例
尽可能的使用Hash数据结构存储
设置key的过期时间
保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除
vim /etc/redis/6379.conf
其他选项
volatile-lru :使用LRU算法从已设置过期时间的数据集合中淘汰数据
volatile-ttl :从已设置过期时间的数据集合中挑选即将过期的数据淘汰
volatile-random :从已设置过期时间的数据集合中随机挑选数据淘汰
allkeys-lru :使用LRU算法从所有数据集合中淘汰数据
allkeys-random :从数据集合中任意选择数据淘汰
noenviction :禁止淘汰数据