环境说明
环境:
python 3.7.1
centos 7.4
pip 10.0.1
部署
[root@localhost ~]#python3.7--versionPython3.7.1[root@localhost ~]#
[root@localhost ~]# pip3 install douyin
有时候因为网络原因会安装失败,这时重新执行上面的命令即可,直到安装完成。
导入douyin模块
[root@localhost ~]# python3.7>>>import douyin>>>
导入如果报错的话,可能douyin模块没有安装成功。
下面我们开始爬…爬抖音小视频和音乐咯
[root@localhost douyin]#python3.7dou.py
几分钟后…我们来看看爬的成果
可以看到视频配的音乐被存储成了 mp3 格式的文件,抖音视频存储成了 mp4 文件。
嗯…不错,哈哈。
py脚本
作者说,能爬抖音上所有热门话题和音乐下的相关视频都爬取到,并且将爬到的视频下载下来,同时还要把视频所配的音乐也单独下载下来,不仅如此,所有视频的相关信息如发布人、点赞数、评论数、发布时间、发布人、发布地点等等信息都需要爬取下来,并存储到 MongoDB 数据库。
importdouyinfromdouyin.structuresimportTopic, Music# 定义视频下载、音频下载、MongoDB 存储的处理器video_file_handler = douyin.handlers.VideoFileHandler(folder='./videos')music_file_handler = douyin.handlers.MusicFileHandler(folder='./musics')#mongo_handler = douyin.handlers.MongoHandler()# 定义下载器,并将三个处理器当做参数传递#downloader = douyin.downloaders.VideoDownloader([mongo_handler, video_file_handler, music_file_handler])downloader = douyin.downloaders.VideoDownloader([video_file_handler, music_file_handler])# 循环爬取抖音热榜信息并下载存储forresultindouyin.hot.trend():foriteminresult.data:# 爬取热门话题和热门音乐下面的所有视频,每个话题或音乐最多爬取 10 个相关视频。downloader.download(item.videos(max=10))
由于我这里没有mongodb所以,把这mongodb相关的配置给注释掉了。
作者github地址: https://github.com/Python3WebSpider/DouYin
====以下摘自作者====
代码解读
本库依赖的其他库有:
aiohttp:利用它可以完成异步数据下载,加快下载速度
dateparser:利用它可以完成任意格式日期的转化
motor:利用它可以完成异步 MongoDB 存储,加快存储速度
requests:利用它可以完成最基本的 HTTP 请求模拟
tqdm:利用它可以进行进度条的展示
数据结构定义
如果要做一个库的话,一个很重要的点就是对一些关键的信息进行结构化的定义,使用面向对象的思维对某些对象进行封装,抖音的爬取也不例外。
在抖音中,其实有很多种对象,比如视频、音乐、话题、用户、评论等等,它们之间通过某种关系联系在一起,例如视频中使用了某个配乐,那么视频和音乐就存在使用关系;比如用户发布了视频,那么用户和视频就存在发布关系,我们可以使用面向对象的思维对每个对象进行封装,比如视频的话,就可以定义成如下结构:
classVideo(Base):def__init__(self, **kwargs):"""
init video object
:param kwargs:
"""super().__init__() self.id = kwargs.get('id') self.desc = kwargs.get('desc') self.author = kwargs.get('author') self.music = kwargs.get('music') self.like_count = kwargs.get('like_count') self.comment_count = kwargs.get('comment_count') self.share_count = kwargs.get('share_count') self.hot_count = kwargs.get('hot_count') ... self.address = kwargs.get('address')def__repr__(self):"""
video to str
:return: str
"""return'>'% (self.id, self.desc[:10].strip()ifself.descelseNone)
这里将一些关键的属性定义成 Video 类的一部分,包括 id 索引、desc 描述、author 发布人、music 配乐等等,其中 author 和 music 并不是简单的字符串的形式,它也是单独定义的数据结构,比如 author 就是 User 类型的对象,而 User 的定义又是如下结构:
classUser(Base):def__init__(self, **kwargs):"""
init user object
:param kwargs:
"""super().__init__() self.id = kwargs.get('id') self.gender = kwargs.get('gender') self.name = kwargs.get('name') self.create_time = kwargs.get('create_time') self.birthday = kwargs.get('birthday') ...def__repr__(self):"""
user to str
:return:
"""return'>'% (self.alias, self.name)
所以说,通过属性之间的关联,我们就可以将不同的对象关联起来,这样显得逻辑架构清晰,而且我们也不用一个个单独维护字典来存储了,其实这就和 Scrapy 里面的 Item 的定义是类似的。
请求和重试
实现爬取的过程就不必多说了,这里面其实用到的就是最简单的抓包技巧,使用 Charles 直接进行抓包即可。抓包之后便可以观察到对应的接口请求,然后进行模拟即可。
所以问题就来了,难道我要一个接口写一个请求方法吗?另外还要配置 Headers、超时时间等等的内容,那岂不是太费劲了,所以,我们可以将请求的方法进行单独的封装,这里我定义了一个 fetch 方法:
def_fetch(url, **kwargs):"""
fetch api response
:param url: fetch url
:param kwargs: other requests params
:return: json of response
"""response = requests.get(url, **kwargs)ifresponse.status_code !=200:raiserequests.ConnectionError('Expected status code 200, but got {}'.format(response.status_code))returnresponse.json()
这个方法留了一个必要参数,即 url,另外其他的配置我留成了 kwargs,也就是可以任意传递,传递之后,它会依次传递给 requests 的请求方法,然后这里还做了异常处理,如果成功请求,即可返回正常的请求结果。
定义了这个方法,在其他的调用方法里面我们只需要单独调用这个 fetch 方法即可,而不需要再去关心异常处理,返回类型了。
好,那么定义好了请求之后,如果出现了请求失败怎么办呢?按照常规的方法,我们可能就会在外面套一层方法,然后记录调用 fetch 方法请求失败的次数,然后重新调用 fetch 方法进行重试,但这里可以告诉大家一个更好用的库,叫做 retrying,使用它我们可以通过定义一个装饰器来完成重试的操作。
比如我可以使用 retry 装饰器这么装饰 fetch 方法:
fromretryingimportretry@retry(stop_max_attempt_number=retry_max_number, wait_random_min=retry_min_random_wait,wait_random_max=retry_max_random_wait, retry_on_exception=need_retry)def_fetch(url, **kwargs):pass
这里使用了装饰器的四个参数:
stop_max_attempt_number:最大重试次数,如果重试次数达到该次数则放弃重试
wait_random_min:下次重试之前随机等待时间的最小值
wait_random_max:下次重试之前随机等待时间的最大值
retry_on_exception:判断出现了怎样的异常才重试
这里 retry_on_exception 参数指定了一个方法,叫做 need_retry,方法定义如下:
defneed_retry(exception):"""
need to retry
:param exception:
:return:
"""result = isinstance(exception, (requests.ConnectionError, requests.ReadTimeout))ifresult: print('Exception', type(exception),'occurred, retrying...')returnresult
这里判断了如果是 requests 的 ConnectionError 和 ReadTimeout 异常的话,就会抛出异常进行重试,否则不予重试。
所以,这样我们就实现了请求的封装和自动重试,是不是非常 Pythonic?
下载处理器的设计
为了下载视频,我们需要设计一个下载处理器来下载已经爬取到的视频链接,所以下载处理器的输入就是一批批的视频链接,下载器接收到这些链接,会将其进行下载处理,并将视频存储到对应的位置,另外也可以完成一些信息存储操作。
在设计时,下载处理器的要求有两个,一个是保证高速的下载,另一个就是可扩展性要强,下面我们分别来针对这两个特点进行设计:
高速下载,为了实现高速的下载,要么可以使用多线程或多进程,要么可以用异步下载,很明显,后者是更有优势的。
扩展性强,下载处理器要能下载音频、视频,另外还可以支持数据库等存储,所以为了解耦合,我们可以将视频下载、音频下载、数据库存储的功能独立出来,下载处理器只负责视频链接的主要逻辑处理和分配即可。
为了实现高速下载,这里我们可以使用 aiohttp 库来完成,另外异步下载我们也不能一下子下载太多,不然网络波动太大,所以我们可以设置 batch 式下载,可以避免同时大量的请求和网络拥塞,主要的下载函数如下:
defdownload(self, inputs):"""
download video or video lists
:param data:
:return:
"""ifisinstance(inputs, types.GeneratorType): temps = []forresultininputs: print('Processing', result,'...') temps.append(result)iflen(temps) == self.batch: self.process_items(temps) temps = []else: inputs = inputsifisinstance(inputs, list)else[inputs] self.process_items(inputs)
这个 download 方法设计了多种数据接收类型,可以接收一个生成器,也可以接收单个或列表形式的视频对象数据,接着调用了 process_items 方法进行了异步下载,其方法实现如下:
defprocess_items(self, objs):"""
process items
:param objs: objs
:return:
"""# define progress barwithtqdm(total=len(objs))asself.bar:# init event looploop = asyncio.get_event_loop()# get num of batchestotal_step = int(math.ceil(len(objs) / self.batch))# for every batchforstepinrange(total_step): start, end = step * self.batch, (step +1) * self.batch print('Processing %d-%d of files'% (start +1, end))# get batch of objsobjs_batch = objs[start: end]# define tasks and run looptasks = [asyncio.ensure_future(self.process_item(obj))forobjinobjs_batch]fortaskintasks: task.add_done_callback(self.update_progress) loop.run_until_complete(asyncio.wait(tasks))
这里使用了 asyncio 实现了异步处理,并通过对视频链接进行分批处理保证了流量的稳定性,另外还使用了 tqdm 实现了进度条的显示。
我们可以看到,真正的处理下载的方法是 process_item,这里面会调用视频下载、音频下载、数据库存储的一些组件来完成处理,由于我们使用了 asyncio 进行了异步处理,所以 process_item 也需要是一个支持异步处理的方法,定义如下:
asyncdefprocess_item(self, obj):"""
process item
:param obj: single obj
:return:
"""ifisinstance(obj, Video): print('Processing', obj,'...')forhandlerinself.handlers:ifisinstance(handler, Handler):awaithandler.process(obj)
这里我们可以看到,真正的处理逻辑都在一个个 handler 里面,我们将每个单独的功能进行了抽离,定义成了一个个 Handler,这样可以实现良好的解耦合,如果我们要增加和关闭某些功能,只需要配置不同的 Handler 即可,而不需要去改动代码,这也是设计模式的一个解耦思想,类似工厂模式。
Handler 的设计
刚才我们讲了,Handler 就负责一个个具体功能的实现,比如视频下载、音频下载、数据存储等等,所以我们可以将它们定义成不同的 Handler,而视频下载、音频下载又都是文件下载,所以又可以利用继承的思想设计一个文件下载的 Handler,定义如下:
fromos.pathimportjoin, existsfromosimportmakedirsfromdouyin.handlersimportHandlerfromdouyin.utils.typeimportmime_to_extimportaiohttpclassFileHandler(Handler):def__init__(self, folder):"""
init save folder
:param folder:
"""super().__init__() self.folder = folderifnotexists(self.folder): makedirs(self.folder)asyncdef_process(self, obj, **kwargs):"""
download to file
:param url: resource url
:param name: save name
:param kwargs:
:return:
"""print('Downloading', obj,'...') kwargs.update({'ssl':False}) kwargs.update({'timeout':10})asyncwithaiohttp.ClientSession()assession:asyncwithsession.get(obj.play_url, **kwargs)asresponse:ifresponse.status ==200: extension = mime_to_ext(response.headers.get('Content-Type')) full_path = join(self.folder,'%s.%s'% (obj.id, extension))withopen(full_path,'wb')asf: f.write(awaitresponse.content.read()) print('Downloaded file to', full_path)else: print('Cannot download %s, response status %s'% (obj.id, response.status))asyncdefprocess(self, obj, **kwargs):"""
process obj
:param obj:
:param kwargs:
:return:
"""returnawaitself._process(obj, **kwargs)
这里我们还是使用了 aiohttp,因为在下载处理器中需要 Handler 支持异步操作,这里下载的时候就是直接请求了文件链接,然后判断了文件的类型,并完成了文件保存。
视频下载的 Handler 只需要继承当前的 FileHandler 即可:
fromdouyin.handlersimportFileHandlerfromdouyin.structuresimportVideoclassVideoFileHandler(FileHandler):asyncdefprocess(self, obj, **kwargs):"""
process video obj
:param obj:
:param kwargs:
:return:
"""ifisinstance(obj, Video):returnawaitself._process(obj, **kwargs)
这里其实就是加了类别判断,确保数据类型的一致性,当然音频下载也是一样的。
异步 MongoDB 存储
上面介绍了视频和音频处理的 Handler,另外还有一个存储的 Handler 没有介绍,那就是 MongoDB 存储,平常我们可能习惯使用 PyMongo 来完成存储,但这里我们为了加速,需要支持异步操作,所以这里有一个可以实现异步 MongoDB 存储的库,叫做 Motor,其实使用的方法差不太多,MongoDB 的连接对象不再是 PyMongo 的 MongoClient 了,而是 Motor 的 AsyncIOMotorClient,其他的配置基本类似。
在存储时使用的是 update_one 方法并开启了 upsert 参数,这样可以做到存在即更新,不存在即插入的功能,保证数据的不重复性。
整个 MongoDB 存储的 Handler 定义如下:
fromdouyin.handlersimportHandlerfrommotor.motor_asyncioimportAsyncIOMotorClientfromdouyin.structuresimport*classMongoHandler(Handler):def__init__(self, conn_uri=None, db='douyin'):"""
init save folder
:param folder:
"""super().__init__()ifnotconn_uri: conn_uri ='localhost'self.client = AsyncIOMotorClient(conn_uri) self.db = self.client[db]asyncdefprocess(self, obj, **kwargs):"""
download to file
:param url: resource url
:param name: save name
:param kwargs:
:return:
"""collection_name ='default'ifisinstance(obj, Video): collection_name ='videos'elifisinstance(obj, Music): collection_name ='musics'collection = self.db[collection_name]# save to mongodbprint('Saving', obj,'to mongodb...')ifawaitcollection.update_one({'id': obj.id}, {'$set': obj.json()}, upsert=True): print('Saved', obj,'to mongodb successfully')else: print('Error occurred while saving', obj)
可以看到我们在类中定义了 AsyncIOMotorClient 对象,并暴露了 conn_uri 连接字符串和 db 数据库名称,可以在声明 MongoHandler 类的时候指定 MongoDB 的链接地址和数据库名。
同样的 process 方法,这里使用 await 修饰了 update_one 方法,完成了异步 MongoDB 存储。
好,以上便是 douyin 库的所有的关键部分介绍,这部分内容可以帮助大家理解这个库的核心部分实现,另外可能对设计模式、面向对象思维以及一些实用库的使用有一定的帮助。