- 直播预告丨精度优于AlphaFold,基于深度学习实现生物大分子及其互作的三维结构预测
「MeetAI4S」系列直播第6期将于1月15日19:00准时开播,HyperAI超神经有幸邀请到了南开大学统计与数据科学学院教授郑伟,他本次分享的主题是「AlphaFold3王座未稳,来自学术界的反超:基于深度学习的生物大分子及其互作的三维结构预测」。蛋白质的功能取决于其独特的三维结构,近年来,基于深度学习等人工智能技术的蛋白质结构预测发展迅猛,AlphaFold甚至获得了2024年诺贝尔化学奖
- Gary Marcus 2025年AI预测:AGI仍在路上,务实发展才是王道
前端
人工智能领域发展日新月异,各种预测层出不穷。知名人工智能专家GaryMarcus近期发布了对2025年AI发展趋势的25项预测,其中最引人注目的是:AGI(通用人工智能)不会在2025年出现。这与一些过于乐观甚至盲目乐观的预测形成了鲜明对比。本文将深入解读Marcus的预测,探讨其背后的逻辑,并结合当前AI技术发展现状进行分析。Marcus的预测整体基调是谨慎乐观,他既肯定了AI在特定领域的进步,
- 数据驱动销售预测的未来:ScriptEcho赋能高效决策
前端
在瞬息万变的商业环境中,准确的销售预测是企业制定有效销售策略、实现业绩增长的基石。传统的销售预测方法往往依赖于人工分析和复杂的电子表格,效率低下,难以应对市场变化的快速冲击。然而,随着大数据的兴起和人工智能技术的飞速发展,数据驱动决策正成为现代企业提升竞争力的关键。本文将探讨销售预测面临的挑战与机遇,并重点介绍ScriptEcho如何通过AI赋能,提升销售预测的准确性和效率,助力企业实现数据驱动增
- 一款开源免费的数据可视化大屏 JimuBI,低代码与 AI 结合产品
简介JimuBI是一个JAVA语言的低代码数据可视化大屏BI产品,将大屏、仪表盘、移动面板、图表或页面元素封装为基础组件,无需编写代码即可完成业务需求。这是JeecgBoot团队出品的另外一款报表产品,积木报表已经成为业内报表首先,预测该大屏即将覆盖全行业。酷炫大屏轻松设计,通过拖拽完成大屏设计,80多种组件及20多种边框装饰满足您的设计需求。智能仪表盘简单易用,拖拽式操作自由布局,页面自适应;支
- H266/VVC 帧间预测中 AMVR 技术
码流怪侠
帧间预测H266VVCVVenCAMVR运动搜索视频编解码
自适应运动精度AMVR最早的视频编码标准采用整数像素精度描述运动矢量,因此运动估计只能利用位于整数点位置的像素。但实际上物体的真实运动经常是连续的,采用整像素精度并不能很好的描述运动矢量。H.264和HEVC都对亮度分量的运动矢量采用1/4像素精度、色度分量的运动矢量采用1/8像素精度。在HEVC中,当切片头中的use_integer_mv_flag等于0时,运动矢量差(MVDs,即运动矢量与预测
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- 交叉熵损失函数(Cross-Entropy Loss)
我叫罗泽南
深度学习人工智能
原理交叉熵损失函数是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵的数学公式交叉熵的定义如下:CrossEntroyLoss=−∑i=1Nyi⋅log(y^i)\begin{equation}CrossEntroyLoss=-\sum_{i=1}^{N}y_i\cdotlog(\hat{y}_i)\end{equati
- 基于Python的股市数据爬取与分析:从实时行情到历史数据的完整教程
Python爬虫项目
2025年爬虫实战项目python数据挖掘开发语言爬虫oracle人工智能
引言股市投资是一项具有高度风险和回报的活动,实时行情和历史数据的获取是股市分析和决策的基础。随着数据科学和爬虫技术的迅速发展,许多投资者和分析师通过编写Python爬虫来获取股市数据,进行数据分析、技术分析和预测。无论是获取实时股市行情,还是分析股票的历史数据,Python都能为我们提供强大的工具支持。本篇博客将为你提供一个完整的股市数据爬取与分析教程,介绍如何利用Python爬虫获取实时股市行情
- Python爬虫教程:抓取区块链交易信息及加密货币市场数据
Python爬虫项目
2025年爬虫实战项目python爬虫区块链开发语言人工智能网络爬虫
前言随着区块链技术和加密货币的迅猛发展,区块链交易和加密货币市场的数据逐渐成为金融、技术、经济研究等领域的热点。对于开发者和研究者而言,实时获取区块链交易数据和加密货币市场行情,对于投资分析、市场预测、技术研究等具有重要的参考价值。本文将通过Python爬虫技术,介绍如何抓取区块链交易信息及加密货币市场数据,详细阐述数据获取的原理、技术方案、实现方法以及抓取到的数据的存储与分析。我们将依托最新的爬
- Python 爬虫:商品价格监控与波动分析
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言ide网络爬虫
随着电子商务的迅猛发展,商品价格的监控和波动分析在各类应用中具有重要价值。通过爬取电商平台的商品价格数据,我们不仅可以分析商品的价格趋势,还可以预测未来的价格波动,并为定价、促销策略提供数据支持。本文将详细介绍如何利用Python编写爬虫,抓取商品价格数据,并进行价格波动分析。目录1.爬虫概述与技术选型2.环境配置与依赖库安装3.目标平台与数据抓取3.1获取商品价格示例:抓取京东商品价格3.2抓取
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- HarmonyOS 开发实战 —— 模块化架构组件 (使用系统路由表+注解+hvigor插件 自动配置项目模块化)
CTrup
鸿蒙开发HarmonyOS移动开发harmonyos架构uiArkUI组件化插件化hvigor
往期笔录记录:鸿蒙(HarmonyOS)北向开发知识点记录~鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中……@satis/oh-router简介@sati
- HarmonyOS 开发实践——模块化架构组件 (使用系统路由表+注解+hvigor插件 自动配置项目模块化)
我是你叶
HarmonyOS鸿蒙开发移动开发harmonyos架构鸿蒙开发uiArkui移动开发组件化
往期推文看点鸿蒙(HarmonyOS)北向开发知识点记录~鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中……@satis/oh-router简介@satis
- 用Python实现GM(1,1)预测
python游乐园
学习资源python开发语言
importnumpyasnpimportmatplotlib.pyplotaspltdefgm11(x0):#累加生成序列x1=np.cumsum(x0)n=len(x0)#构造矩阵B和向量YB=np.zeros((n-1,2))Y=np.zeros((n-1,1))foriinrange(0,n-1):B[i][0]=-0.5*(x1[i]+x1[i+1])B[i][1]=1Y[i][0]=x
- 预见未来:基于MySQL的实时用户行为影响预测系统,掌握商业先机
墨夶
数据库学习资料2mysql数据库
在这个信息瞬息万变的时代,企业如何能够迅速响应市场变化,准确捕捉用户需求,成为竞争中的佼佼者?答案在于构建一个高效的实时用户行为影响预测系统。通过利用MySQL的强大功能和先进的数据分析技术,我们可以深入挖掘用户的每一次点击、浏览乃至购买背后的故事,不仅帮助公司更好地理解现有客户群体的行为模式,还能提前预测未来的趋势走向。今天,我们将带您走进这个神奇的世界,探索如何用代码编织出一张精准描绘用户心理
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 机器学习的介绍
2201_75874206
机器学习人工智能
目录1.机器学习的定义2.机器学习的原理3.机器学习的方法4.机器学习的分类5.机器学习的评估6.机器学习的应用场景7.机器学习与人工智能的关系结论机器学习在自然语言处理中的最新应用和技术是什么?如何评估机器学习模型的性能,除了交叉验证、MSE和RMSE外,还有哪些其他重要的指标?在金融风险管理中,机器学习如何帮助预测市场趋势和信用风险?市场趋势预测信用风险评估机器学习与人工智能之间的关系在未来发
- Spring Security(maven项目) 3.0.2.5版本中改
严欣铷
springmavenjava
前言:通过实践而发现真理,又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识,又从理性认识而能动地指导革命实践,改造主观世界和客观世界。实践、认识、再实践、再认识,这种形式,循环往复以至无穷,而实践和认识之每一循环的内容,都比较地进到了高一级的程度本期目标《对上一期的内容进行一波改革,迭代》原因:写的太烂内容回顾:我们对DeleatingFilterProxy,FilterChain
- 隐私计算开源助力数据要素流通
HZGame.
算法安全
主讲老师:李宏宇课程链接:第2讲:隐私计算开源助力数据要素流通丨隐私计算实训营第2期_哔哩哔哩_bilibili1、数据要素流转与数据内外循环这是数据的生命周期也是数据流转的链路图,我们可以发现数据流转可以分为数据采集加工和数据价值释放两个部分,而数据价值释放也分成两个部分:一部分是内循环,数据持有方在自己的运维管控域内对自己的数据使用和安全拥有全责,一部分是外循环,数据要素离开了持有方管控域,在
- 隐语安装部署
HZGame.
大数据数据库架构
主讲老师:周爱辉讲课链接:第4讲(上):隐语安装部署-理论篇丨隐私计算实训营第2期_哔哩哔哩_bilibili主讲老师:王祖利讲课链接:第4讲(下):SecretFlow与Secretnote的安装部署—实操篇丨隐私计算实训营第2期_哔哩哔哩_bilibili一、SecretFlow运行要求:1、环境要求Python>=3.8操作系统:•CentOS7•Anolis8•Ubuntu18.04/20
- 数据可信流通
HZGame.
大数据网络运维
主讲老师:韦韬学习链接:第1讲:数据可信流通,从运维信任到技术信任丨隐私计算实训营第1期_哔哩哔哩_bilibili【一图读懂|数据二十条】-国家发展和改革委员会(ndrc.gov.cn)“数据二十条”对外发布,构建数据基础制度体系——做强做优做大数字经济_政策解读_中国政府网(www.gov.cn)通过以上的图片和链接,让我们可以了解什么是“数据二十条”,建立数据来源可确认、使用范围可界定、流通
- 通俗易懂之广义加性模型GAM时序预测(pyGAM)
智识小站
可解释机器学习python
广义加性模型(GAM)在时间序列预测中是一种强大的工具,能够捕捉数据中的非线性趋势和复杂模式。本文将详细介绍如何在Python中实现广义加性模型进行时间序列预测,包括所需的库、数据预处理、模型构建、训练以及评估。如果这篇文章对你有一点点的帮助,欢迎点赞、关注、收藏、转发、评论哦!我也会在微信公众号“智识小站”坚持分享更多内容,以期记录成长、普及技术、造福后来者!一、GAM在时间序列中的应用时间序列
- 基于LSTM的空气污染情况预测与可视化平台设计与实现
QQ346127357
javaweblstm人工智能rnn
一、选题来源及意义(一)选题来源改革开放以来,中国经济取得了举世瞩目的伟大成就。随着城市化进程的加快和工业发展的加速,空气污染问题已经成为影响我国城市居民生活质量的重要因素。但与此同时,以高能耗和高排放为代价的发展模式也给中国的环境治理带来了严峻挑战[1]。空气污染不仅对环境造成破坏,还对人类健康产生严重影响[2]。给人们的生产生活带来极大的困扰。现阶段,我国城市高度重视环境污染治理工作,并采取相
- 图论DFS:黑红树
Python_enjoy
C++洛谷题解每周更新栏目深度优先图论算法
我的个人主页{\large\mathsf{{\color{Red}我的个人主页}}}我的个人主页往{\color{Red}{\Huge往}}往期{\color{Green}{\Huge期}}期文{\color{Blue}{\Huge文}}文章{\color{Orange}{\Huge章}}章DFS算法:记忆化搜索DFS算法:全排列问题DFS算法:洛谷B3625迷宫寻路此系列更新频繁,求各位读者点赞
- 解决tsconfig.json配置paths, 却依然报错can't find module?
NodeJs程序中若使用typescript经常会遇到一个问题,即明明在tsconfig.json里配置了paths映射,为啥import使用路径别名,例如@test/a.ts时,会报错can'tfindmodule'@test/a.ts'?其实根本原因在于typescript只负责编译期检查,而执行模块时,tsconfig.json配置的paths自然无法影响js的模块查找机制,故报错分享:要解
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- 广义加性模型的参数、半参数、非参数形式
智识小站
可解释机器学习算法
简要介绍在统计学中,广义加性模型(GAM)是一种广义线性模型,其中线性响应变量线性地依赖于一些预测变量的未知光滑函数,并且人们对这些光滑函数的推理很感兴趣。GAM最初由TrevorHastie和RobertTibshirani[1]开发,用于将广义线性模型的性质与加性模型相结合。它们可以被解释为朴素贝叶斯生成模型的判别推广。该模型将一个单变量响应变量Y和一些预测变量联系起来。为Y指定指数族分布,例
- 数字孪生:物联+数据打造洞察世界新视角
CServer_01
数字孪生模拟仿真工业软件
引言:数字孪生是物理系统向信息空间映射的关键技术,通过传感器、数据分析、物联网,实现实时模拟和控制。新一代信息技术支撑数字孪生的广泛应用,使其在工业、城市、交通、医疗、水利等多领域实现虚拟与现实融合,促进经济社会创新发展。如果,您可以打造任何物品、场景、城市的另一种表达形式。就如同打开上帝视角一样,可以随时随地及时监控物它的性能,预测物品的状况,并提高其效率。这种实时、持续的信息更新、交换,使得您
- Python人工智能在气象中的应用,包括:天气预测、气候模拟、降雨量和降水预测、气象数据分析、气象预警系统
xiao5kou4chang6kai4
气象气候预报天气预测气候模拟.降雨量和降水预测气象数据分析气象预警系统python
Python人工智能在气象中有多种应用,包括:天气预测、气候模拟、降雨量和降水预测、气象数据分析、气象预警系统Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。人工智
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&