Flink mysql-cdc connector 源码解析

在 Flink 1.11 引入了 CDC 机制,CDC 的全称是 Change Data Capture,用于捕捉数据库表的增删改查操作,是目前非常成熟的同步数据库变更方案。Flink CDC Connectors 是 Apache Flink 的一组源连接器,是可以从 MySQL、PostgreSQL 数据直接读取全量数据和增量数据的 Source Connectors.

Flink SQL CDC 内置了 Debezium 引擎,利用其抽取日志获取变更的能力,将 changelog 转换为 Flink SQL 认识的 RowData 数据。RowData 代表了一行的数据,在 RowData 上面会有一个元数据的信息 RowKind,RowKind 里面包括了插入(+I)、更新前(-U)、更新后(+U)、删除(-D),这样和数据库里面的 binlog 概念十分类似。通过 Debezium 采集的数据,包含了旧数据(before)和新数据行(after)以及原数据信息(source),op 的 u表示是 update 更新操作标识符(op 字段的值c,u,d,r 分别对应 create,update,delete,reade),ts_ms 表示同步的时间戳。

下面就来深入 Flink 的源码分析一下 CDC 的实现原理

首先 mysql-cdc 作为 Flink SQL 的一个 connector,那就肯定会对应一个 TableFactory 类,我们就从这个工厂类入手分析一下源码的实现过程,先找到源码里面的 MySQLTableSourceFactory 这个类,然后来看一下它的 UML 类图.

Flink mysql-cdc connector 源码解析_第1张图片

从上图中可以看到 MySQLTableSourceFactory 只实现了 DynamicTableSourceFactory 这个接口,并没有实现 DynamicTableSinkFactory 的接口,所以 mysql-cdc 是只支持作为 source 不支持作为 sink 的,如果想要写入 mysql 的话,可以使用JDBC 的 connector.

然后直接来看 MySQLTableSourceFactory#createDynamicTableSource 方法实现,源码如下所示:

@Override
public DynamicTableSource createDynamicTableSource(Context context) {
    final FactoryUtil.TableFactoryHelper helper =
            FactoryUtil.createTableFactoryHelper(this, context);
    helper.validateExcept(DebeziumOptions.DEBEZIUM_OPTIONS_PREFIX);

    final ReadableConfig config = helper.getOptions();
    String hostname = config.get(HOSTNAME);
    String username = config.get(USERNAME);
    String password = config.get(PASSWORD);
    String databaseName = config.get(DATABASE_NAME);
    String tableName = config.get(TABLE_NAME);
    int port = config.get(PORT);
    Integer serverId = config.getOptional(SERVER_ID).orElse(null);
    ZoneId serverTimeZone = ZoneId.of(config.get(SERVER_TIME_ZONE));
    StartupOptions startupOptions = getStartupOptions(config);
    TableSchema physicalSchema =
            TableSchemaUtils.getPhysicalSchema(context.getCatalogTable().getSchema());

    return new MySQLTableSource(
            physicalSchema,
            port,
            hostname,
            databaseName,
            tableName,
            username,
            password,
            serverTimeZone,
            getDebeziumProperties(context.getCatalogTable().getOptions()),
            serverId,
            startupOptions);
}

这个方法的主要作用就构造 MySQLTableSource 对象,先会从 DDL 中获取 hostname,username,password 等数据库和表的信息,然后去构建 MySQLTableSource 对象.

接着来看一下 MySQLTableSource#getScanRuntimeProvider 这个方法,它会返回一个用于读取数据的运行实例对象

@Override
public ScanRuntimeProvider getScanRuntimeProvider(ScanContext scanContext) {
    RowType rowType = (RowType) physicalSchema.toRowDataType().getLogicalType();
    TypeInformation typeInfo =
            scanContext.createTypeInformation(physicalSchema.toRowDataType());
    DebeziumDeserializationSchema deserializer =
            new RowDataDebeziumDeserializeSchema(
                    rowType, typeInfo, ((rowData, rowKind) -> {}), serverTimeZone);
    MySQLSource.Builder builder =
            MySQLSource.builder()
                    .hostname(hostname)
                    .port(port)
                    .databaseList(database)
                    .tableList(database + "." + tableName)
                    .username(username)
                    .password(password)
                    .serverTimeZone(serverTimeZone.toString())
                    .debeziumProperties(dbzProperties)
                    .startupOptions(startupOptions)
                    .deserializer(deserializer);
    Optional.ofNullable(serverId).ifPresent(builder::serverId);
    DebeziumSourceFunction sourceFunction = builder.build();

    return SourceFunctionProvider.of(sourceFunction, false);
}

这个方法里面先获取了 rowType 和 typeInfo 信息,然后构建了一个 DebeziumDeserializationSchema 反序列对象,这个对象的作用是把读取到的 SourceRecord 数据类型转换成 Flink 认识的 RowData 类型.接着来看一下 deserialize 方法.

public void deserialize(SourceRecord record, Collector out) throws Exception {
    // 获取 op 类型
    Operation op = Envelope.operationFor(record);
    // 获取数据
    Struct value = (Struct)record.value();
    // 获取 schema 信息
    Schema valueSchema = record.valueSchema();
    GenericRowData delete;
    // 根据 op 的不同类型走不同的操作
    if (op != Operation.CREATE && op != Operation.READ) {
        // delete
        if (op == Operation.DELETE) {
            delete = this.extractBeforeRow(value, valueSchema);
            this.validator.validate(delete, RowKind.DELETE);
            delete.setRowKind(RowKind.DELETE);
            out.collect(delete);
        } else {
            // update
            delete = this.extractBeforeRow(value, valueSchema);
            this.validator.validate(delete, RowKind.UPDATE_BEFORE);
            delete.setRowKind(RowKind.UPDATE_BEFORE);
            out.collect(delete);
            GenericRowData after = this.extractAfterRow(value, valueSchema);
            this.validator.validate(after, RowKind.UPDATE_AFTER);
            after.setRowKind(RowKind.UPDATE_AFTER);
            out.collect(after);
        }
    } else {
        // insert
        delete = this.extractAfterRow(value, valueSchema);
        this.validator.validate(delete, RowKind.INSERT);
        delete.setRowKind(RowKind.INSERT);
        out.collect(delete);
    }
}

这里主要会判断进来的数据类型,然后根据不同的类型走不同的操作逻辑,如果是 update 操作的话,会输出两条数据.最终都是会转换成 RowData 类型输出.

接着往下面看是 builder.build() 该方法构造了 DebeziumSourceFunction 对象,也就是说 Flink 的底层是采用 Debezium 来读取 mysql,PostgreSQL 数据库的变更日志的.为什么没有用 canal 感兴趣的同学自己可以对比一下这两个框架

然后来看一下 DebeziumSourceFunction 的 UML 类图

Flink mysql-cdc connector 源码解析_第2张图片

可以发现 DebeziumSourceF unction 不仅继承了 RichSourceFunction 这个抽象类,而且还实现了 checkpoint 相关的接口,所以 mysql-cdc 是支持 Exactly Once 语义的.这几个接口大家都非常熟悉了,这里不再过多介绍.

直接来看一下核心方法 open 和 run 方法的逻辑如下

public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        ThreadFactory threadFactory = (new ThreadFactoryBuilder()).setNameFormat("debezium-engine").build();
        this.executor = Executors.newSingleThreadExecutor(threadFactory);
    }


public void run(SourceContext sourceContext) throws Exception {
    this.properties.setProperty("name", "engine");
    this.properties.setProperty("offset.storage", FlinkOffsetBackingStore.class.getCanonicalName());
    if (this.restoredOffsetState != null) {
        this.properties.setProperty("offset.storage.flink.state.value", this.restoredOffsetState);
    }

    this.properties.setProperty("key.converter.schemas.enable", "false");
    this.properties.setProperty("value.converter.schemas.enable", "false");
    this.properties.setProperty("include.schema.changes", "false");
    this.properties.setProperty("offset.flush.interval.ms", String.valueOf(9223372036854775807L));
    this.properties.setProperty("tombstones.on.delete", "false");
    this.properties.setProperty("database.history", FlinkDatabaseHistory.class.getCanonicalName());
    if (this.engineInstanceName == null) {
        this.engineInstanceName = UUID.randomUUID().toString();
        FlinkDatabaseHistory.registerEmptyHistoryRecord(this.engineInstanceName);
    }

    this.properties.setProperty("database.history.instance.name", this.engineInstanceName);
    String dbzHeartbeatPrefix = this.properties.getProperty(Heartbeat.HEARTBEAT_TOPICS_PREFIX.name(), Heartbeat.HEARTBEAT_TOPICS_PREFIX.defaultValueAsString());
    this.debeziumConsumer = new DebeziumChangeConsumer(sourceContext, this.deserializer, this.restoredOffsetState == null, this::reportError, dbzHeartbeatPrefix);
    this.engine = DebeziumEngine.create(Connect.class).using(this.properties).notifying(this.debeziumConsumer).using(OffsetCommitPolicy.always()).using((success, message, error) -> {
        if (!success && error != null) {
            this.reportError(error);
        }

    }).build();
    if (this.running) {
        this.executor.execute(this.engine);
        this.debeziumStarted = true;
        MetricGroup metricGroup = this.getRuntimeContext().getMetricGroup();
        metricGroup.gauge("currentFetchEventTimeLag", () -> {
            return this.debeziumConsumer.getFetchDelay();
        });
        metricGroup.gauge("currentEmitEventTimeLag", () -> {
            return this.debeziumConsumer.getEmitDelay();
        });
        metricGroup.gauge("sourceIdleTime", () -> {
            return this.debeziumConsumer.getIdleTime();
        });

        try {
            while(this.running && !this.executor.awaitTermination(5L, TimeUnit.SECONDS)) {
                if (this.error != null) {
                    this.running = false;
                    this.shutdownEngine();
                    ExceptionUtils.rethrow(this.error);
                }
            }
        } catch (InterruptedException var5) {
            Thread.currentThread().interrupt();
        }

    }
}

open 方法里面主要是创建了一个单线程化的线程池(它只会用唯一的工作线程来执行任务).所以 mysql-cdc 源是单线程读取的.

run 方法里先是设置了一大堆 debenium 的属性,比如 include.schema.changes 默认是 false ,也就是说不会捕获表结构的变更,所以如果有新增字段的话,目前 Flink 任务是不能动态感知 schema 变化的.主要关心的是 insert update delete 操作.

最核心的地方是构建 DebeziumEngine 对象,然后通过上面的线程池来执行 engine,后面还有一些 metric 相关的逻辑,最后是一个循环的判断任务的状态,如果程序有异常或者被打断就抛出异常中断线程关闭 DebeziumEngine 对象.

推荐阅读

Flink SQL 如何实现列转行?

Flink SQL 结合 HiveCatalog 使用

Flink SQL 解析嵌套的 JSON 数据

Flink SQL 中动态修改 DDL 的属性

Flink WindowAssigner 源码解析

Flink 1.11.x WatermarkStrategy 不兼容问题

Flink mysql-cdc connector 源码解析_第3张图片

如果你觉得文章对你有帮助,麻烦点一下在看吧,你的支持是我创作的最大动力.

你可能感兴趣的:(数据库,nosql,xhtml,hash,jvm)