集成学习-Stacking集成学习算法(task13.2021.0512)

集成学习-Stacking集成学习算法(task13.2021.0512)

文章目录

  • 集成学习-Stacking集成学习算法(task13.2021.0512)
  • 一、Stacking集成学习算法
  • 二、代码
  • Blending与Stacking对比
  • 总结

一、Stacking集成学习算法

基于前面对Blending集成学习算法的讨论,我们知道:Blending在集成的过程中只会用到验证集的数据,对数据实际上是一个很大的浪费。为了解决这个问题,我们详细分析下Blending到底哪里出现问题并如何改进。在Blending中,我们产生验证集的方式是使用分割的方式,产生一组训练集和一组验证集,这让我们联想到交叉验证的方式。顺着这个思路,我们对Stacking进行建模(如下图):
集成学习-Stacking集成学习算法(task13.2021.0512)_第1张图片

  • 首先将所有数据集生成测试集和训练集(假如训练集为10000,测试集为2500行),那么上层会进行5折交叉检验,使用训练集中的8000条作为训练集,剩余2000行作为验证集(橙色)。
  • 每次验证相当于使用了蓝色的8000条数据训练出一个模型,使用模型对验证集进行验证得到2000条数据,并对测试集进行预测,得到2500条数据,这样经过5次交叉检验,可以得到中间的橙色的5 2000条验证集的结果(相当于每条数据的预测结果),5 2500条测试集的预测结果。
  • 接下来会将验证集的5 2000条预测结果拼接成10000行长的矩阵,标记为 A1A1 ,而对于5 2500行的测试集的预测结果进行加权平均,得到一个2500一列的矩阵,标记为 B1B1 。
  • 上面得到一个基模型在数据集上的预测结果 A1A1 、 B1B1 ,这样当我们对3个基模型进行集成的话,相于得到了 A1A1 、 A2A2 、 A3A3 、 B1B1 、 B2B2 、 B3B3 六个矩阵。
  • 之后我们会将 A1A1 、 A2A2 、 A3A3 并列在一起成10000行3列的矩阵作为training data, B1B1 、 B2B2 、 B3B3 合并在一起成2500行3列的矩阵作为testing data,让下层学习器基于这样的数据进行再训练。
  • 再训练是基于每个基础模型的预测结果作为特征(三个特征),次学习器会学习训练如果往这样的基学习的预测结果上赋予权重w,来使得最后的预测最为准确。
    集成学习-Stacking集成学习算法(task13.2021.0512)_第2张图片

二、代码

代码如下(示例):

# 1. 简单堆叠3折CV分类
from sklearn import datasets

iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB 
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingCVClassifier

RANDOM_SEED = 42

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=RANDOM_SEED)
clf3 = GaussianNB()
lr = LogisticRegression()

# Starting from v0.16.0, StackingCVRegressor supports
# `random_state` to get deterministic result.
sclf = StackingCVClassifier(classifiers=[clf1, clf2, clf3],  # 第一层分类器
                            meta_classifier=lr,   # 第二层分类器
                            random_state=RANDOM_SEED)

print('3-fold cross validation:\n')

for clf, label in zip([clf1, clf2, clf3, sclf], ['KNN', 'Random Forest', 'Naive Bayes','StackingClassifier']):
    scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

3-fold cross validation:

Accuracy: 0.91 (+/- 0.01) [KNN]
Accuracy: 0.95 (+/- 0.01) [Random Forest]
Accuracy: 0.91 (+/- 0.02) [Naive Bayes]
Accuracy: 0.93 (+/- 0.02) [StackingClassifier]

# 我们画出决策边界
from mlxtend.plotting import plot_decision_regions
import matplotlib.gridspec as gridspec
import itertools

gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10,8))
for clf, lab, grd in zip([clf1, clf2, clf3, sclf], 
                         ['KNN', 
                          'Random Forest', 
                          'Naive Bayes',
                          'StackingCVClassifier'],
                          itertools.product([0, 1], repeat=2)):
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(lab)
plt.show()

集成学习-Stacking集成学习算法(task13.2021.0512)_第3张图片
使用第一层所有基分类器所产生的类别概率值作为meta-classfier的输入。需要在StackingClassifier 中增加一个参数设置:use_probas = True。

另外,还有一个参数设置average_probas = True,那么这些基分类器所产出的概率值将按照列被平均,否则会拼接。

例如:

基分类器1:predictions=[0.2,0.2,0.7]

基分类器2:predictions=[0.4,0.3,0.8]

基分类器3:predictions=[0.1,0.4,0.6]

1)若use_probas = True,average_probas = True,

则产生的meta-feature 为:[0.233, 0.3, 0.7]
2)若use_probas = True,average_probas = False,

则产生的meta-feature 为:[0.2,0.2,0.7,0.4,0.3,0.8,0.1,0.4,0.6]


# 2.使用概率作为元特征
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()

sclf = StackingCVClassifier(classifiers=[clf1, clf2, clf3],
                            use_probas=True,  # 
                            meta_classifier=lr,
                            random_state=42)

print('3-fold cross validation:\n')

for clf, label in zip([clf1, clf2, clf3, sclf], 
                      ['KNN', 
                       'Random Forest', 
                       'Naive Bayes',
                       'StackingClassifier']):

    scores = cross_val_score(clf, X, y, 
                                              cv=3, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" 
          % (scores.mean(), scores.std(), label))

3-fold cross validation:

Accuracy: 0.91 (+/- 0.01) [KNN]
Accuracy: 0.95 (+/- 0.01) [Random Forest]
Accuracy: 0.91 (+/- 0.02) [Naive Bayes]
Accuracy: 0.95 (+/- 0.02) [StackingClassifier]

# 3. 堆叠5折CV分类与网格搜索(结合网格搜索调参优化)
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB 
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from mlxtend.classifier import StackingCVClassifier

# Initializing models

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=RANDOM_SEED)
clf3 = GaussianNB()
lr = LogisticRegression()

sclf = StackingCVClassifier(classifiers=[clf1, clf2, clf3], 
                            meta_classifier=lr,
                            random_state=42)

params = {
     'kneighborsclassifier__n_neighbors': [1, 5],
          'randomforestclassifier__n_estimators': [10, 50],
          'meta_classifier__C': [0.1, 10.0]}

grid = GridSearchCV(estimator=sclf, 
                    param_grid=params, 
                    cv=5,
                    refit=True)
grid.fit(X, y)

cv_keys = ('mean_test_score', 'std_test_score', 'params')

for r, _ in enumerate(grid.cv_results_['mean_test_score']):
    print("%0.3f +/- %0.2f %r"
          % (grid.cv_results_[cv_keys[0]][r],
             grid.cv_results_[cv_keys[1]][r] / 2.0,
             grid.cv_results_[cv_keys[2]][r]))

print('Best parameters: %s' % grid.best_params_)
print('Accuracy: %.2f' % grid.best_score_)

0.947 +/- 0.03 {‘kneighborsclassifier__n_neighbors’: 1, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
0.933 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 1, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 50}
0.940 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 1, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 10}
0.940 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 1, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 50}
0.953 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 50}
0.953 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 5, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier__n_neighbors’: 5, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 50}
Best parameters: {‘kneighborsclassifier__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
Accuracy: 0.95

# 如果我们打算多次使用回归算法,我们要做的就是在参数网格中添加一个附加的数字后缀,如下所示:
from sklearn.model_selection import GridSearchCV

# Initializing models

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=RANDOM_SEED)
clf3 = GaussianNB()
lr = LogisticRegression()

sclf = StackingCVClassifier(classifiers=[clf1, clf1, clf2, clf3], 
                            meta_classifier=lr,
                            random_state=RANDOM_SEED)

params = {
     'kneighborsclassifier-1__n_neighbors': [1, 5],
          'kneighborsclassifier-2__n_neighbors': [1, 5],
          'randomforestclassifier__n_estimators': [10, 50],
          'meta_classifier__C': [0.1, 10.0]}

grid = GridSearchCV(estimator=sclf, 
                    param_grid=params, 
                    cv=5,
                    refit=True)
grid.fit(X, y)

cv_keys = ('mean_test_score', 'std_test_score', 'params')

for r, _ in enumerate(grid.cv_results_['mean_test_score']):
    print("%0.3f +/- %0.2f %r"
          % (grid.cv_results_[cv_keys[0]][r],
             grid.cv_results_[cv_keys[1]][r] / 2.0,
             grid.cv_results_[cv_keys[2]][r]))

print('Best parameters: %s' % grid.best_params_)
print('Accuracy: %.2f' % grid.best_score_)

0.940 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
0.940 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 50}
0.940 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 10}
0.940 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 50}
0.960 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 50}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 50}
0.960 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 50}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 1, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 50}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 50}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 10}
0.953 +/- 0.02 {‘kneighborsclassifier-1__n_neighbors’: 5, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 10.0, ‘randomforestclassifier__n_estimators’: 50}
Best parameters: {‘kneighborsclassifier-1__n_neighbors’: 1, ‘kneighborsclassifier-2__n_neighbors’: 5, ‘meta_classifier__C’: 0.1, ‘randomforestclassifier__n_estimators’: 10}
Accuracy: 0.96

# 4.在不同特征子集上运行的分类器的堆叠
##不同的1级分类器可以适合训练数据集中的不同特征子集。以下示例说明了如何使用scikit-learn管道和ColumnSelector:
from sklearn.datasets import load_iris
from mlxtend.classifier import StackingCVClassifier
from mlxtend.feature_selection import ColumnSelector
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression

iris = load_iris()
X = iris.data
y = iris.target

pipe1 = make_pipeline(ColumnSelector(cols=(0, 2)),  # 选择第0,2列
                      LogisticRegression())
pipe2 = make_pipeline(ColumnSelector(cols=(1, 2, 3)),  # 选择第1,2,3列
                      LogisticRegression())

sclf = StackingCVClassifier(classifiers=[pipe1, pipe2], 
                            meta_classifier=LogisticRegression(),
                            random_state=42)

sclf.fit(X, y)
# 5.ROC曲线 decision_function
### 像其他scikit-learn分类器一样,它StackingCVClassifier具有decision_function可用于绘制ROC曲线的方法。
### 请注意,decision_function期望并要求元分类器实现decision_function。
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingCVClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier

iris = datasets.load_iris()
X, y = iris.data[:, [0, 1]], iris.target

# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]

RANDOM_SEED = 42

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=RANDOM_SEED)

clf1 =  LogisticRegression()
clf2 = RandomForestClassifier(random_state=RANDOM_SEED)
clf3 = SVC(random_state=RANDOM_SEED)
lr = LogisticRegression()

sclf = StackingCVClassifier(classifiers=[clf1, clf2, clf3],
                            meta_classifier=lr)

# Learn to predict each class against the other
classifier = OneVsRestClassifier(sclf)
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',
         lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

集成学习-Stacking集成学习算法(task13.2021.0512)_第4张图片

Blending与Stacking对比

Blending与Stacking对比:
Blending的优点在于:

比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)
而缺点在于:

使用了很少的数据(是划分hold-out作为测试集,并非cv)
blender可能会过拟合(其实大概率是第一点导致的)
stacking使用多次的CV会比较稳健

总结

在本章中,我们讨论了如何使用Blending和Stacking的方式去集成多个模型,相比于Bagging与Boosting的集成方式,Blending和Stacking的方式更加简单和直观,且效果还很好,因此在比赛中有这么一句话:它(Stacking)可以帮你打败当前学术界性能最好的算法 。那么截至目前为止,我们已经把所有的集成学习方式都讨论完了。

你可能感兴趣的:(集成学习)