- QKV 注意力机制在Transformer架构中的作用,和卷积在卷积神经网络中的地位,有哪些相似之处?
安意诚Matrix
机器学习笔记transformercnn深度学习
QKV注意力机制在Transformer架构中的作用,和卷积在卷积神经网络中的地位,有哪些相似之处?QKV(Query-Key-Value)注意力机制在Transformer架构和卷积在卷积神经网络(CNN)中都起着核心作用,它们有以下一些相似之处:特征提取QKV注意力机制:在Transformer中,QKV注意力机制通过Query与Key的计算来确定对不同位置Value的关注程度,从而自适应地提
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- Pandas 高级使用技巧:高效数据处理与优化
壹屋安源
知识分享pandaspython数据处理
文章目录Pandas高级使用技巧:高效数据处理与优化1.高效处理大规模数据集节省内存:指定`dtypes`2.高效的数据合并与连接使用`merge`高效合并使用`concat`拼接多个DataFrame3.提高查询和过滤效率使用`query`提高过滤性能⚡利用`loc`和`iloc`高效定位数据4.高效处理缺失值使用`fillna`填充缺失值⚖️删除含有缺失值的行5.使用多线程加速计算使用`das
- 大模型在高血压预测及围手术期管理中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2研究目的1.3国内外研究现状二、大模型预测高血压的原理与方法2.1常用大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前风险预测与手术方案制定3.1术前风险因素分析3.2大模型预测术前风险的方法与结果3.3基于预测结果的手术方案制定四、术中风险预测与麻醉方案制定4.1术中风险因素分析4.2大模型实时监测与风险预测4.3基于预测结果的麻醉方案制定五、术
- 数据结构——线性表——链式存储结构——C++实现线性表
MISAYAONE
【数据结构】C++疑难杂症知识点链表数据结构C++增加结点结点
链式存储结构C++实现篇:主要实现了线性表的定义、初始化、显示、增、删结点、查找结点操作。切记亲力亲为,动手实践写代码
- 【JAVA-数据结构】枚举
Mr_star_galaxy
数据结构java数据结构开发语言
咱们继续,这篇咱们讲解枚举,跟上一篇联系相对较大,大家可以关联来看。1背景及定义枚举是在JDK1.5以后引入的。主要用途是:将一组常量组织起来,在这之前表示一组常量通常使用定义常量的方式:publicstaticfinalintRED=1;publicstaticfinalintGREEN=2;publicstaticfinalintBLACK=3;但是常量举例有不好的地方,例如:可能碰巧有个数字
- 2025年必备AI工具:这款PPT生成工具让你事半功倍
MiaoChuPPT
powerpointpptaigpt
还在为做PPT头疼?别担心!今天给大家安利一款超好用的AI生成PPT神器——秒出PPT!就算你是PPT小白,也能用它轻松做出专业级的演示文稿!快来看看它有多厉害吧!秒出PPT:你的智能PPT助手秒出PPT是一款超级智能的PPT生成工具,不仅能帮你快速做出好看的PPT,还支持巨幕展示、动画制作、视频编辑等功能。简单来说,它就是你的“办公小助手”,让你从繁琐的设计中解放出来,专注于内容本身!1.为什么
- 为AI聊天工具添加一个知识系统 之133 详细设计之74通用编程语言 之4 架构及其核心
一水鉴天
人工语言智能制造软件智能架构人工智能开发语言
本篇继续讨论通用编程语言。说明:本阶段的所有讨论都是围绕这一主题展开的,但前面的讨论分成了三个大部分(后面列出了这一段的讨论题目的归属关系)-区别distinguish(各别):文化和习俗。知识表征,思维导图及观察者效应,Chance:偶然和适配,符号学芭比等逻辑和平台。视觉及其工作原理,圣灵三角形和Checker,数据及其意义等实体和神经元。智能语义网络,记忆矩阵等。只有“核心技术:Cognit
- PPT 小黑第29套
荷包蛋大王iovo
powerpoint
对应大猫29组合图弹出来excel表勾选用到的数据(系列三用不到)-更改图表类型-有主次坐标轴之分图形+这里数据标签改成一位小数:选中要改的数字-数字下面类别-数字/百分比小数位数(保留几位写几)折线图数据标记就是折线图上的点数据标签-类别名称和百分比取消标题行的特殊格式:-表设计按住Ctrl画一个正圆,再插入一个太阳,选择窗格按住ctrl同时选中,-合并形状-组合右击图形-大小和位置调位置动画结
- AAAI 2024 | Attentive Eraser:通过自注意力重定向引导释放扩散模型的物体移除潜力
小白学视觉
计算机顶会论文解读人工智能计算机视觉AAAI论文解读计算机顶会
论文信息题目:AttentiveEraser:UnleashingDiffusionModel’sObjectRemovalPotentialviaSelf-AttentionRedirectionGuidanceAttentiveEraser:通过自注意力重定向引导释放扩散模型的物体移除潜力作者:WenhaoSun,BenleiCui,Xue-MeiDong,JingqunTang源码:http
- 【含文档+PPT+源码】基于SpringBoot和Vue的编程学习系统
小咕聊编程
springbootvue.js学习
项目介绍本课程演示的是一款基于SpringBoot和Vue的编程学习系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。1.包含:项目源码、项目文档、数据库脚本、软件工具等所有资料2.带你从零开始部署运行本套系统3.该项目附带的源码资料可作为毕设使用该SpringBoot+Vue的编程学习系统,后端采用SpringBoot架构,前端采用Vue+ElementUI实现页
- Hive Exception: Too many counters: 2001 max=2000 的解决方法
houzhizhen
hivehivehadoopbigdata
在hive任务的执行过程中,可能出现Toomanycounters的异常。如果执行引擎时tez,则说明当前作业的counters数量超过tez默认的counters限制。Exception:Toomanycounters:2001max=2000atorg.apache.tez.common.counters.Limits.checkCounters(Limits.java:88)atorg.ap
- AI时代,程序员如何提升竞争力:技术与软技能双修炼
源码姑娘
人工智能
人工智能技术的迅猛发展正在重塑软件开发行业的格局。从代码生成工具(如GitHubCopilot)到智能调试系统,AI已从辅助工具逐步演变为开发流程中不可或缺的伙伴。然而,这种变革既是机遇也是挑战:程序员若想在这场技术浪潮中保持竞争力,必须实现技术与软技能的双重修炼。本文将从技术深耕、AI工具驾驭、跨学科融合及软技能提升四个维度,探讨程序员的核心竞争力构建路径。一、技术修炼:从工具使用者到领域专家1
- 【论文笔记】3DGS压缩相关工作2篇
AndrewHZ
深度学习新浪潮论文阅读3DGS计算机图形学算法三维高斯飞溅压缩方法
1.背景介绍:NVS神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。近期
- hexo 上传后gitHub 中custom domain 被重置
shaoin_2
前端零碎githubgit
问题背景通过hexo构建的个人博客,托管在gitHub上,并在setting=>pages=>Customdomain中将自己的域名与gitHub路径绑定。这样可直接通过自己的域名访问博客了。问题描述项目在执行hexoclean=>hexogenerate=>hexodeploy后gitHub上的Customdomain填写的域名被重置了。解决问题在项目的source文件夹下添加一个CNAME文件
- rust建深海_使用 Rust 构建个人博客(1) - Warp 后端框架
Zeldovich Yakov
rust建深海
需求背景一个朋友买了一个云主机(就是300元3年的那种)云主机配置是:CPU:vCPU2内存:2G硬盘:40G带宽:1M公网IP:1个预装的系统是:Windows2008R2这台机器上,跑了一些他自己的东西,虽然机器整体性能不咋的,但是总觉得还可以再“挖掘”一些性能(挤一挤总是会有的),所以还在跑一个自己的博客。技术选型最初他问我的时候,我就让他用WAMP+WordPress,方便、省事儿,而且W
- Rust编程基础教程:Web开发入门
AI天才研究院
AI实战DeepSeekR1&大数据AI人工智能大模型Python实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍由于Rust语言的出生地广泛流行于各个领域,有许多公司、组织都在用Rust进行开发,包括微软、Facebook、阿里巴巴、GitHub等。在移动端领域,包括华为、苹果、OPPO、vivo等都在大力推动Rust的应用。同时,Rust也越来越受欢迎,成为云计算、区块链、高性能计算等领域的主流编程语言。因此,对于新手而言,理解Rust编程语言的基本概念及特性,掌握
- 基于 Rust 与 GBT32960 规范构建高并发、高可用、高扩展服务端程序
编码浪子
Rust学习php开发语言
一、需求背景如今,数字化发展特别快,各种设备和系统之间要频繁地交换数据,而且这个过程变得越来越复杂。很多行业都有难题,既要处理大量的数据,又得快速响应各种命令。比如说在智能交通这一块,路上跑的车得和后台管理系统一直保持联系。车要不停地把自己的位置、跑多快、车子有没有毛病这些数据传给后台,同时还要接收后台发来的指令,像限速要调整了,或者重新规划一下行车路线。在工业物联网的场景里,到处都是传感器和执行
- 密码学在区块链技术中的应用
2401_85754355
密码学区块链
目录1.问题背景1.1区块链技术的快速发展1.2密码学的重要性1.3面临的安全挑战1.4密码学解决方案的需求2.密码学在区块链中的具体应用2.1哈希函数在区块链中的应用2.2数字签名和公钥基础设施(PKI)在区块链中的作用3.问题分析3.1技术层面的分析3.2应用场景的分析3.3监管与合规的分析3.4未来发展的分析4.解决方案4.1技术方面4.2应用方面4.3监管与合规方面4.4社会方面5.结论6
- LLM OS 系统架构详细设计
AI天才研究院
AI大模型企业级应用开发实战系统架构
LLMOS系统架构详细设计1.背景介绍近年来,大型语言模型(LargeLanguageModel,LLM)取得了飞速发展,在自然语言处理、对话系统、文本生成等领域展现出卓越的性能。然而,现有的LLM系统架构仍然存在诸多局限性,例如可扩展性不足、资源利用率低下、缺乏灵活的应用开发支持等。为了充分发挥LLM的潜力,迫切需要一个高效、灵活、易用的LLM操作系统(OperatingSystem,OS)。本
- LeetCode 59:螺旋矩阵Ⅱ python(边界收缩)
地塞米米松
Leetcode刷题leetcode矩阵python
LeetCode59:螺旋矩阵Ⅱpython(边界收缩)这个题目真的是把自己卡死,中间尝试了好多方法都不完美,看了很多大神的讲解,也迷迷糊糊,终于啃了两天之后,彻彻底底搞明白了!!一、题目题目传送门—https://leetcode-cn.com/problems/spiral-matrix-ii/二、解析这个题目有点绕,从定义变量,定义二维列表,到一圈一圈向内旋转填充数字,再到最后的边界确定每一
- DenseUNet 改进:添加ASPP模块
听风吹等浪起
AI改进系列深度学习人工智能计算机视觉神经网络网络
目录1.ASPP模块2.DenseUNet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.ASPP模块ASPP(AtrousSpatialPyramidPooling,空洞空间金字塔池化)是语义分割模型(如DeepLab系列)中的核心模块,旨在捕捉多尺度上下文信息,提升模型对不同尺寸物体的分割效果。1.背景与动机问题:图像中的物体尺寸差异大(如汽
- 能源行业非结构化数据管理创新案例研究
CaritoB
非结构化数据管理非结构化数据管理
在能源行业,非结构化数据的管理正逐渐成为提升企业竞争力和运营效率的关键。从油气勘探的日志、图像到电力行业的监控视频、设备运行记录,这些非结构化数据蕴含着巨大的价值。然而,传统的数据管理方法难以应对非结构化数据的复杂性和规模。能源行业非结构化数据管理的挑战(一)数据存储与分布能源行业的非结构化数据通常分布在不同的地理位置和系统中。例如,油气田的勘探数据可能存储在野外设备中,而电力变电站的监控视频可能
- 非结构化数据中台AI大模型对接解决方案
CaritoB
非结构化数据管理人工智能机器学习大数据
引言企业数字化升级持续推进,数据要素和相应数据法律法规逐步完善,企业数据合规监管力度加大。大模型等前沿AI技术快速发展,企业利用AI推动生产力发展时也面临着数据安全和合规的挑战。例如AI智能问答应用场景中,企业敏感信息可能被无权限用户获取。此背景下,企业数据安全管理、应用、流通至关重要。非结构化数据中台为企业提供了一个安全整合、管理、分析和应用非结构化数据的解决方案,它能够快速整合、处理和分析大量
- 深度学习数据集封装-----目标检测篇
科研小天才
深度学习目标检测人工智能
前言在上篇文章中,我们深入探讨了图像分类数据集的制作流程。图像分类作为计算机视觉领域的一个基础任务,通常被认为是最为简单直接的子任务之一。然而,当我们转向目标检测任务时,复杂度便显著提升,尤其是在标注框的处理环节。不同的模型架构往往对标注框的处理方式有着各自独特的要求。以YOLO系列为例,它自有一套成熟且高效的方法来应对这一挑战。鉴于篇幅有限,本文暂不深入展开YOLO的相关内容,感兴趣的读者可以查
- composer install 中出现用户名密码错误问题的解决方法
kge888
laravelcomposergitgitcomposerlaravel
问题背景:laravel项目新从git上拉取下来,初次进行composer重构,在执行composerinstall的时候,执行中断报如下错误:[RuntimeException]Failedtoexecutegitclone--no-checkout"
[email protected]:xx/api-client.git""C:\phpStudy\PHPTutorial\WWW\xxx\vendor
- 深入理解 Transformer:用途、原理和示例
范吉民(DY Young)
简单AI学习transformer深度学习人工智能
深入理解Transformer:用途、原理和示例一、Transformer是什么Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,在2017年的论文“AttentionIsAllYouNeed”中惊艳登场。它打破了传统循环神经网络(RNN)按顺序处理序列、难以并行计算以及卷积神经网络(CNN)在捕捉长距离依赖关系上的局限,另辟蹊径地采用多头注意力机制
- DeepSeek赋能生活全场景:20个职场人/学生/宝妈必备AI实践指南
小小鸭程序员
javapythonspringcloud云原生kafka
2024春节AI圈顶流:国产大模型DeepSeek持续霸屏!除技术解析外,更值得关注的是其在实际生活场景中的落地应用。本文整理20个高价值使用姿势,助你快速解锁AI助手生产力!一、学习成长加速器1.智能简历优化师使用场景:输入基础工作经历,自动生成ATS友好型简历,附带岗位关键词匹配与成就量化建议高阶技巧:上传JD文件,获取定制化简历修改报告2.论文架构大师核心功能:根据研究主题自动生成三级大纲框
- Kafka 主题 retention.ms 配置修改及深度问题排查指南
XMYX-0
kafka分布式
文章目录Kafka主题retention.ms配置修改及深度问题排查指南版本背景查看Kafka主题当前状态修改retention.ms配置的正确方式为什么不能使用kafka-topics.sh?使用kafka-configs.sh动态更新配置深入解析retention配置retention.ms与retention.bytes的关系配置生效机制ISR异常(Isr:0)深度排查什么是ISR?常见原因
- 深入xtquant:实时行情订阅与数据处理技巧
量化投资技术
量化软件Python量化miniQMTQMT量化交易量化投资
深入xtquant:实时行情订阅与数据处理技巧量化软件开通量化实战教程在量化交易领域,实时行情的获取和处理是构建有效交易策略的关键。本文将深入探讨如何使用xtquant库进行实时行情的订阅和数据处理,帮助读者掌握这一重要技能。技术背景与应用场景xtquant是一个强大的Python库,专为量化交易设计,提供了丰富的数据接口和工具。通过它,我们可以轻松地订阅股票、期货等金融产品的实时行情数据,进而实
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1