“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)

目 录

  1. 研究目标
  2. 分析方法与过程
    2.1. 总体流程
    2.2. 具体步骤
    2.3. 结果分析
  3. 结论
  4. 参考文献

1. 挖掘目标

本次建模目标是利用网络爬虫工具采集的大量网络舆情信息,采用数据挖掘技术,给予用户信息中的关键词赋权,分析用户信息中不同权重大小的关键词与网络舆情信息间的关系,挖掘用户与网络舆情信息的关联规则,使用关键词加权评分系统构建反映与用户最相关的网络舆情信息。从而可以发挥网络对社会监督的巨大作用,以及及时有效的处理网络舆情突发事件。

2. 分析方法与过程

2.1. 总体流程

本用例主要包括如下步骤:

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第1张图片
步骤一: 编写 java 语言,在网络舆情信息资料库中进行 web 信息提取与关键词提取,对十项关键词(去除二个样本无差别变量:国别,照片),进行“or”逻辑规则搜索,得到相应关键词的网页地址。

步骤二: 在关键词词频统计的基础上,设置用户信息中十项关键词的权重。

步骤三: 基于二值法优化构建关键词加权评分系统(详细流程见图 2),将净化出关键词的网页进行评分。

步骤四:对网页的评分高低排序并归档,完成关联度分析。

2.2. 具体步骤

步骤一:web 信息提取与关键词提取

样本预处理

在用户信息的十二项关键词中,“国别”关键词在样本中均为“中国”,无法区别不同样本之间的差别,所以予以剔除。“照片”关键词只在三个样本中出现,相对全部样本而言样缺失值过多,所以予以剔除。

编写 java 语句,使其可以输入关键词并遍历“网路舆情信息”文件夹。对关键词使用“or”逻辑规则完成对“网络舆情信息”的搜索。“or”逻辑规则即搜索时只要含有任意一个关键词即符合搜索条件,可输出。

搜索结果如下:
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第2张图片
由上表可知,在性别与住址频数中存在大量干扰信息,所以进一步修正搜索规则,对性别,住址单独出现的网址,予以剔除。

修正搜索结果如下:
在这里插入图片描述
在这里插入图片描述

步骤二: 关键词的权重设置

根据表二中的关键词频数,计算关键词权重。

关键词出现的频数越多,提供的信息的干扰性越强,有效性越低,因此笔者将出现频数越大的关键词设置较小的权重。

计算方法如下:
1. 单 个 关 键 词 权 重 系 数 = 所 有 关 键 词 频 数 之 和 − 单 个 关 键 词 频 数 所 有 关 键 词 频 数 之 和 1. 单个关键词权重系数=\frac{所有关键词频数之和-单个关键词频数}{所有关键词频数之和} 1.=

2. 关 键 词 权 重 = 单 个 关 键 词 权 重 系 数 ∑ 单 个 关 键 词 权 重 系 数 2. 关键词权重=\frac {单个关键词权重系数}{\sum 单个关键词权重系数} 2.=

例 : 姓 名 权 重 系 数 = 所 有 关 键 词 频 数 之 和 − 姓 名 频 数 所 有 关 键 词 频 数 之 和 = 113894 1138 = 0.9174 例:姓名权重系数=\frac{所有关键词频数之和-姓名频数}{所有关键词频数之和}=\frac{1138 94}{1138}=0.9174 ==1138113894=0.9174
姓 名 权 重 = 姓 名 权 重 系 数 ∑ 单 个 关 键 词 权 重 系 数 = 0.9174 9 = 0.1091 姓名权重=\frac{姓名权重系数}{\sum 单个关键词权重系数} = \frac{0.9174}{9}=0.1091 ==90.9174=0.1091

将其余关键词代入上式公式,得关键词权重表如下:
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第3张图片

步骤三:二值法优化构建关键词加权评分系统

  1. 将十项关键词权重转换为十维向量:
    σ \sigma σ=(姓名,性别,住址,身份证号,电话号码, 出生日期,QQ号码,E-mail,MSN,附加关键字) =(0.1091,0.0812,0.1005,0.1101,0.0956, 0.111,0.0956,0.1109,0.1109,0.0822)

  2. 将单个网页中的关键词频数转换为十维向量:
    β i j \beta_{ij} βij=(姓名,性别,住址,身份证号,电话号码, 出生日期,QQ号码,E-mail,MSN,附加关键字)i =1,…,27,即用户信息.xls中的样本个数。 j =“网络舆情信息”文件夹中网页个数

  3. 运用二值法将向量 β i j \beta_{ij} βij各分量中频数大于 0 的值记为 1,等于 0 仍记为 0。得出向量 β i j 1 \beta_{ij}^1 βij1

  4. 将向量 β i j 1 \beta_{ij}^1 βij1中的各分量分别乘于相应的权重值,得向量 β i j ∗ \beta_{ij}^* βij

例:某网页含有关键词频数结果:
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第4张图片
则转换为向量 β 1 \beta^1 β1=(1,1,0,0,0,0,0,0,0,0),与关键词权重表(表三)相应分量相乘得出向量 β ∗ \beta^* β=(0.1091,0.0812,0,0,0,0,0,0,0,0)。

  1. 对向量 δ \delta δ与向量 β ∗ \beta^* β求余弦值,即 c o s θ i j = δ ⃗ ⋅ β i j ∗ ⃗ ∣ δ ∣ ∣ β i j ∗ ∣ cos \theta_{ij}= \frac{\vec{\delta} \cdot \vec{\beta_{ij}^*}}{|\delta| |\beta_{ij}^*|} cosθij=δβijδ βij

二值法优化构建的关键词加权评分系统流程图如下:
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第5张图片

步骤四:评分排序并归档

  1. 将步骤三中的 c o s θ i cos \theta_i cosθi计算出结果并从高至低排序,同时为了数据直观表现,笔者将 c o s θ i cos \theta_i cosθi的数值放大 100 倍。
  2. 建立分档规则:70 分及以上为优;50~70 分为良;30~50 分为中;低于 30 分为差
  3. 将数据按分档规则进行分档。

2.3. 结果分析

经计算结果如下:

  1. 用户信息中的“高连岳,周茂名,周世涛,陈志祥,黄浩”五个样本信息无法找到与 “ 网络舆情信息”文件夹中的网址有相匹配的关键词出现, 则算得的 β 1 \beta^1 β1 (0,0,0,0,0,0,0,0,0,0)。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第6张图片
因此向量 δ \delta δ与向量 β ∗ \beta^* β的之间余弦值为 0,无法对上述用户信息进行评分排序并归档。

  1. 用户信息中的“王林”在“网络舆情信息”文件夹中找到 3 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表五所示,根据步骤四中的评分标准与归档规则,“王林”与该 3 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第7张图片

  1. 用户信息中的“王力宏”在“网络舆情信息”文件夹中找到 1 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表六所示,根据步骤四中的评分标准与归档规则,“王力宏”与该 1 个网页的关联程度为“中”等。
    “泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第8张图片

  2. 用户信息中的“郑玉龙”在“网络舆情信息”文件夹中找到 18 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表七所示,根据步骤四中的评分标准与归档规则,“郑玉龙”与其中 1 个网页的关联程度为“良”等;与 8 个网页的关联程度为“中”等;与 9 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第9张图片

  1. 用户信息中的“丁羽心”在“网络舆情信息”文件夹中找到 4 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表八所示,根据步骤四中的评分标准与归档规则,“丁羽心”与其中 3 个网页的关联程度为“中”等;与 1 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第10张图片

  1. 用户信息中的“胡万林”在“网络舆情信息”文件夹中找到 13 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表九所示,根据步骤四中的评分标准与归档规则,“胡万林”与其中 1 个网页的关联程度为“良”等;与 12 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第11张图片

  1. 用户信息中的“李天”在“网络舆情信息”文件夹中找到 13 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十所示,根据步骤四中的评分标准与归档规则,“李天”与其中 1 个网页的关联程度为“良”等;与11 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第12张图片

  1. 用户信息中的“李江”在“网络舆情信息”文件夹中找到 9 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十一所示,根据步骤四中的评分标准与归档规则,“李江”与其中 5 个网页的关联程度为“中”等;与4 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第13张图片
9. 用户信息中的“黄明”在“网络舆情信息”文件夹中找到 3 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十二所示,根据步骤四中的评分标准与归档规则,“黄明”与这 3 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第14张图片
10. 用户信息中的“余晓明”在“网络舆情信息”文件夹中找到 158 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十二所示,根据步骤四中的评分标准与归档规则,“余晓明”与其中 157 个网页的关联程度为“良”等;与其中 1 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第15张图片
11. 用户信息中的“张望”在“网络舆情信息”文件夹中找到 11 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十四所示,根据步骤四中的评分标准与归档规则,“张望”与其中 7 个网页的关联程度为“中”等;与其中 4 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第16张图片
12. 用户信息中的“方小明”在“网络舆情信息”文件夹中找到 8 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十五所示,根据步骤四中的评分标准与归档规则,“方小明”与这 8 个网页的关联程度为“中”等;
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第17张图片
13. 用户信息中的“张秋白”在“网络舆情信息”文件夹中找到 9 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十四所示,根据步骤四中的评分标准与归档规则,“张秋白”与其中 1 个网页的关联程度为“优”等;与其中 7 个网页的关联程度为“中”等;与其中 1 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第18张图片
14. 用户信息中的“王五”在“网络舆情信息”文件夹中找到 1 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十四所示,根据步骤四中的评分标准与归档规则,“王五”与这 1 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第19张图片
15. 用户信息中的“李世民”在“网络舆情信息”文件夹中找到 6 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十八所示,根据步骤四中的评分标准与归档规则,“李世民”与其中 1 个网页的关联程度为“中”等;与其中 5 个网页的关联程度为“差”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第20张图片

  1. 用户信息中的“钟建国”在“网络舆情信息”文件夹中找到 7 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表十九所示,根据步骤四中的评分标准与归档规则,“钟建国”与其中 7 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第21张图片
17. 用户信息中的“李龙”在“网络舆情信息”文件夹中找到 8 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表二十所示,根据步骤四中的评分标准与归档规则,“李龙”与其中 8 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第22张图片

  1. 用户信息中的“陈龙”在“网络舆情信息”文件夹中找到 8 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表二十一所示,根据步骤四中的评分标准与归档规则,“陈龙”与这 8 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第23张图片

  1. 用户信息中的“马小龙”在“网络舆情信息”文件夹中找到 1 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表二十二所示,根据步骤四中的评分标准与归档规则,“马小龙”与这个网页的关联程度为“优”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第24张图片

  1. 用户信息中的“胡万林”在“网络舆情信息”文件夹中找到 2 个网址中的关键词与此用户信息的关键词匹配,则向量 β 1 \beta^1 β1,得分,网址等详细信息如表二十三所示,根据步骤四中的评分标准与归档规则,“胡万林”与其中 1 个网页的关联程度为“良”等;与其中 1 个网页的关联程度为“中”等。

“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第25张图片

3. 结论

从上述的结果分析中,笔者发现用户的得分结果并不理想,用户信息与网页关键词匹配程度达到“中”等,“差”等居多,达到“优”等占极少数,而其中同时只出现性别和住址两个关键词的网页与用户信息匹配居多,而性别与住址两者包含的无效信息多。因此笔者的结果分析不能提供高的精确度保证结论的正确性。

代表性用户信息分析:

在结果分析中,笔者发现用户信息中“王力宏”的信息量少,出现的匹配关键词只有性别和住址,评分结果为“中”等,因“王力宏”为知名人士,而名人对自身的隐私保护相当严谨,以防止自身隐私泄露不应承担的负担。

在结果分析中,笔者发现用户信息中“余晓明”的信息量大,出现的匹配关键词有性别,电话号码,QQ 号码与附加关键字。评分结果多为“良”等,与之匹配的网页多为广告型网页,发布的信息多为联系方式,以方便销售产品,因此推论此人为广告商或是广告代理人员。

在结果分析中,笔者发现用户信息中“张秋白”的信息量大,原因在与之关键词匹配的网页中,有 1 个网页中的关键词完全与此用户信息的关键词匹配。则评分结果为“优”等。结果发现该网页内容为离婚协议。通过其他与此用户信息关键词匹配的网页,可以推此人为律师。

在结果分析中,笔者发现用户信息中“胡万林”的此人的信息重复出现两次,除了出生日期不同,其余关键词均相同。推论为用户为注册账号时,避免个人信息泄露过多,或是填写出生日期时选择错误,导致此种情况出现。

模型优点:笔者通过 java 程序,可以迅速完成对关键词的在“网络舆情信息”中的网页搜索,相比人工搜索省时省力,精准度大幅提高。同时也实现了关键词加权评分系统的一体化,即可以一步输出评分结果。不必分步计算结果,使用户可以更简单方便的取得评分结果,并在此基础上推导结论。

模型缺点:在关键词词频统计时,由于关键词性别与住址出现频数过多,导致其他关键词的权重区别不大,因此,为了区分关键词权重的不同,笔者将对性别,住址单独出现的网址,予以剔除。使得不同关键词的权重差异明显,但是按照笔者的思路,性别与住址这两个关键词的权重应该是在全部关键词权重中最小的两个,但是根据笔者的方法修改后,性别与住址的权重相对变大了,影响了在对关键词加权评分系统中的正常评分结果。

模型改进:在结果分析中,笔者发现许多用户信息中与之匹配关键词的网址都只出现了性别和住址,但这两个关键词的无效信息大,应予以删除,重新计算评分排名情况。

修正前评分排名情况:
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第26张图片
修正后评分排名情况:
“泰迪杯”挑战赛 - 基于Java的面向网络舆情的关联度分析(附算法代码)_第27张图片
删除了同时只出现性别和地址的网页,使得用户信息的评分系统更能真实反映用户与网页的关联度。

4. 参考文献

[1]张义忠. 基于内容的网页特征提取[J].计算机工程与应用,2001,10

[2]何佳.网络舆情监控系统的实现方法[J].郑州大学学报,2010,10

[3]华秀丽.语义分析与词频统计相结合的中文文本相似度量方法研究[J].计算机应用研究,2012,03

[4]李实.中文网络客户评论的产品特征挖掘方法研究[D].哈尔滨:哈尔滨工业大学,2009

[5]何新贵.中文文本的关键词自动抽取和模糊分类[J].中文信息学报,1999,01

附录:

词频统计的程序代码:

package html;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
public class main_html {
     
static boolean containsAny(String str, String searchChars){
     
return str.contains(searchChars);
}
public static boolean deleteFile(String sPath) {
      
 boolean flag = false; 
 File file = new File(sPath); 
 // 路径为文件且不为空则进行删除 
 if (file.isFile() && file.exists()) {
      
 file.delete(); 
 flag = true;
 } 
 return flag; 
} 
public static double cos(int []a){
     
int s1=0,s2=0;
for(int i=0;i<a.length;i++){
     
s1+=a[i];
s2+=a[i]^2;
}
return s1/(Math.sqrt(s2)*Math.sqrt(a.length));
}
public static void main(String[] args) throws IOException {
     
File file = new File("D:/sjwj2"); //文件夹的位置
File[] files = file.listFiles(); //得到文件夹下所有的文
件
File f;
FileInputStream ism;
InputStreamReader isr;
BufferedReader bs;
String info;
int [] count = {
     0,0,0,0,0,0,0,0,0,0}; //统计单个网页词频
的数组
int sum=0;
int a=0;
int [] c = {
     0,0,0,0,0,0,0,0,0,0}; //标记单个网页词频
的二值数组,用于筛选
int [] sum_count = {
     0,0,0,0,0,0,0,0,0,0}; //统计总词频的数
组中
String [][] key ={
     {
     "王林"," 男 "," 江西萍乡人
","360321196109183330",
"13338941845","1961-09-18","1961918","1961.09.18","345552","tiantianshang@163.com","asd@live.com","
贩毒"},
{
     "高连岳","男"," 大 连 理 工
","210213198512034662","15846576767","1985-12-03","3567457",
"[email protected]","","凌分贝"},
{
     " 王力宏 "," 男 "," 广 西 玉 林
","450922199008194334","18674635914","1990-08-19","1990819","1990.08.19",
"63472457","[email protected]","","金曲奖"},
{
     " 郑玉龙 "," 男 "," 广西玉 林
","450922198501078990","15320230485","1985-01-07","198517","1985.01.07",
"383475421","[email protected]","[email protected]","郑玉龙","小 子","假小子"},
{
     " 丁 羽 心 "," 女 "," 山 西 沁 水 县 ","
440113197803028412","13640786439","2013-12-02","2013122","2013.12.02",
"76295638","[email protected]","[email protected]"," 丁于心","
丁书苗"},
{
     " 胡 万 林 "," 男 "," 四 川
","440113197803028412","13640786438","2013-12-02","2013122","2013.12.02","76295638",
"[email protected]","[email protected]","胡万林"},
{
     " 周茂名 "," 男 "," 海 南 文 昌
","412393199012147650","13348762495","1990-12-14","19901214","1990.12.14",
"76297621","[email protected]","[email protected]","周茂名"},
{
     " 周世涛 "," 男 "," 海 南 文 昌
","412953199012147650","13348762495","1990-12-14","19901214","1990.12.14",
"76297621","[email protected]","[email protected]","周世源"},
{
     " 李 天 "," 男 "," 北京市海淀区
","210422196107197904","13348762496","1964-04-01","196441","1990.04.01",
"76295622","[email protected]","[email protected]","李天一"},
{
     " 李 江 "," 男 "," 北京市海淀区
","370285198509212000","13348762497","1939-03-10","1939310","1939.03.10",
"76295623","[email protected]","[email protected]","
李双江"},
{
     " 陈志祥 "," 男 "," 江 西 省 抚 州 市
","440115198510085699","13348762498","1988-10-10","19881010","1988.10.10",
"76295624","[email protected]","[email protected]"," 陈 志 祥
"},
{
     " 黄 明 "," 男 "," 江西省抚州市
","440116198910094000","13640786426","1988-10-11","19881011","1988.10.11",
"76295625","[email protected]","[email protected]","黄明"},
{
     " 黄 浩 "," 男 "," 江西省抚州市
","440114199105117595","13640786427","1988-10-12","19881012","1988.10.12",
"76295626","[email protected]","[email protected]","黄浩"},
{
     " 余晓明 "," 男 "," 江 西 省 抚 州 市
","440113197803028412","13322838884","1988-10-13","19881013","1988.10.13",
"268033328","[email protected]","[email protected]","18924
889850","汽车出售"},
{
     " 张 望 "," 男 "," 北 京 市
","44018419821219673X","13640786429","1988-10-14","19881014","1988.10.14",
"76295628","[email protected]","[email protected]","张三"},
{
     " 方小明 "," 男 "," 广 州 市
","440183197602106276","13640786430","1988-10-15","19881015","1988.10.15",
"76295629","[email protected]","[email protected]","方小明"},
{
     " 张秋白 "," 男 "," 深 圳 市
","44018319790608271X","13640786431","1988-10-16","19881016","1988.10.16",
"76295630","[email protected]","[email protected]","李四"},
{
     " 王 五 "," 男 "," 江 门 市
","440105198509036000","13640786432","1988-10-17","19881017","1988.10.17",
"76295631","[email protected]","[email protected]","王五"},
{
     " 李世民 "," 男 "," 海 珠 市
","440114198611218000","13640786433","1988-10-18","19881018","1988.10.18",
"76295632","[email protected]","[email protected]","马六"},
{
     " 钟建国 "," 男 "," 北 京 市
","440111198505274000","13640786434","1988-10-19","19881019","1988.10.19",
"76295633","[email protected]","[email protected]","钟建国"},
{
     " 李 龙 "," 男 "," 广 州 市
","44011419851001515X","13640786435","1988-10-20","19881020","1988.10.20",
"76295634","[email protected]","[email protected]"," 李 龙"},
{
     " 陈 龙 "," 男 "," 深 圳 市
","440113199311063000","13640786436","1988-10-21","19881021","1988.10.21",
"76295635","[email protected]","[email protected]","陈龙"},
{
     " 马小龙 "," 男 "," 江 门 市
","440116198109195000","13640786437","1988-10-22","19881022","1988.10.22",
"76295636","[email protected]","[email protected]"," 马小龙
"},

{
     " 胡 万 林 "," 男 "," 四 川
","440113197803028412","13640786438","1949-12-12","19491212","1949.12.12",
"76295637","[email protected]","[email protected]","胡万林"},
{
     " 丁羽心 "," 女 "," 山西沁水县
","440113197803028412","13640786439","1955-01-01","195511","1955.01.01",
"76295638","[email protected]","[email protected]","丁于心","
丁书苗"}
};
for(int ii=0;ii<key.length;ii++){
      //ii 表示第 ii 个用户
sum=0;
for(int i=0;i<files.length;i++){
      //i 表示第 i 个文件
f = files[i];
ism = new FileInputStream(f);
isr = new InputStreamReader(ism);
bs = new BufferedReader(isr);
info=bs.readLine();
while(info!=null){
     
for(int jj=0;jj<key[ii].length;jj++){
      //jj 表示第
jj 个关键字

if(containsAny(info,key[ii][jj]) && jj<=4){
     
c[jj] = 1;
count[jj]+=1;
}
if((!key[ii][jj].equals("")) && 
containsAny(info,key[ii][jj]) && jj>=5 && jj<=7){
     
 count[5]+=1;
 c[5]=1;
}
if((!key[ii][jj].equals("")) && 
containsAny(info,key[ii][jj]) && jj>=8 && jj<=10){
     
 count[jj-2]+=1;
 c[jj-2]=1;
}
if(jj>10 && containsAny(info,key[ii][jj])){
     
count[9]+=1;
c[9]=1;
} }
info = bs.readLine();
}
for(int k=0;k<count.length;k++){
     
sum+=c[k];
}
if(sum==1 && (c[1]==1 || c[2]==1)){
     
c[1]=0;
c[2]=0;
sum=0;
}
if(sum>0){
     
for(int jj=0;jj<count.length;jj++){
     
sum_count[jj]+=count[jj];
count[jj]=0;
c[jj]=0;
} }
else{
     
for(int jj=0;jj<count.length;jj++){
     
count[jj]=0;
c[jj]=0;
} }
sum=0;
ism.close();
isr.close();
bs.close();
sum=0;
}
System.out.println("已对第"+ii+"个用户完成搜索统计");
}
for(int k=0;k<count.length;k++){
     
System.out.print(sum_count[k]+" ");
}
System.out.println("end");
} }

求权值的程序代码:

package html;
public class qz {
     
public static void main(String[] args) {
     
double []a={
     94,306,109,10,159,1,159,2,2,296}; //关键字词
频统计结果
double s_a=0;
for(int k=0;k<10;k++){
     
 s_a+=a[k];
}
double [] b= new double[10];
double [] c = new double[10];
double s_b=0;
for(int i=0;i<10;i++){
     
 b[i]=(s_a-a[i])/s_a;
 s_b+=b[i];
}
for(int j=0;j<10;j++){
     
 c[j]=b[j]/s_b;
}
for(int i=0;i<10;i++){
     
System.out.print(c[i]+" "); //输出权值
} } }

求余弦值的程序代码:

package main_html;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
public class html_main {
     
static boolean containsAny(String str, String searchChars){
     
return str.contains(searchChars);
}
public static boolean deleteFile(String sPath) {
      
 boolean flag = false; 
 File file = new File(sPath); 
 // 路径为文件且不为空则进行删除 
 if (file.isFile() && file.exists()) {
      
 file.delete(); 
 flag = true; 
 } 
 return flag; 
} 
public static double cos(int []a,double [] weights){
     
double s1=0,s2=0,s3=0;
double [] b =new double[a.length];
for(int i=0;i<a.length;i++){
     
b[i]=a[i]*weights[i];
}
for(int i=0;i<a.length;i++){
     
s1+=b[i]*weights[i];
s2+=b[i]*b[i];
s3+=weights[i]*weights[i];
}
return s1/(Math.sqrt(s2)*Math.sqrt(s3));
}
public static void main(String[] args) throws IOException {
     
File file = new File("D:/sjwj2"); //文件夹的位置
File[] files = file.listFiles(); //得到文件夹下所有的文
件
File f;
FileInputStream ism;
InputStreamReader isr;
BufferedReader bs;
String info;
int [] count = new int[10]; //统计词频的二维数组
double [] weights = {
     0.1019,0.0812,0.1005,0.1101,
0.0956,0.1110,0.0956,0.1109,0.1109,0.0822}; // 权
值数组
//录入关键字,日期有三种格式,附加关键字多值的做或搜索
String [][] key ={
     {
     "王林"," 男 "," 江西萍乡人
","360321196109183330",
"13338941845","1961-09-18","1961918","1961.09.18","345552","tiantianshang@163.com","asd@live.com","
贩毒"},
{
     "高连岳","男"," 大 连 理 工
","210213198512034662","15846576767","1985-12-03","3567457",
"[email protected]","","凌分贝"},
{
     " 王力宏 "," 男 "," 广 西 玉 林
","450922199008194334","18674635914","1990-08-19","1990819","1990.08.19",
"63472457","[email protected]","","金曲奖"},
{
     " 郑玉龙 "," 男 "," 广 西 玉 林
","450922198501078990","15320230485","1985-01-07","198517","1985.01.07",
"383475421","[email protected]","[email protected]","郑玉龙","小 子","假小子"},
{
     " 丁 羽 心 "," 女 "," 山 西 沁 水 县 ","
440113197803028412","13640786439","2013-12-02","2013122","2013.12.02",
"76295638","[email protected]","[email protected]"," 丁于心","
丁书苗"},
{
     " 胡 万 林 "," 男 "," 四 川
","440113197803028412","13640786438","2013-12-02","2013122","2013.12.02","76295638",
"[email protected]","[email protected]","胡万林"},
{
     " 周茂名 "," 男 "," 海 南 文 昌
","412393199012147650","13348762495","1990-12-14","19901214","1990.12.14",
"76297621","[email protected]","[email protected]","周茂名"},
{
     " 周世涛 "," 男 "," 海 南 文 昌
","412953199012147650","13348762495","1990-12-14","19901214","1990.12.14",
"76297621","[email protected]","[email protected]","周世源"},
{
     " 李 天 "," 男 "," 北京市海淀区
","210422196107197904","13348762496","1964-04-01","196441","1990.04.01",
"76295622","[email protected]","[email protected]","李天一"},
{
     " 李 江 "," 男 "," 北京市海淀区
","370285198509212000","13348762497","1939-03-10","1939310","1939.03.10",
"76295623","[email protected]","[email protected]","
李双江"},
{
     " 陈志祥 "," 男 "," 江 西 省 抚 州 市
","440115198510085699","13348762498","1988-10-10","19881010","1988.10.10",
"76295624","[email protected]","[email protected]"," 陈 志 祥
"},
{
     " 黄 明 "," 男 "," 江西省抚州市

","440116198910094000","13640786426","1988-10-11","19881011","1988.10.11",
"76295625","[email protected]","[email protected]","黄明"},
{
     " 黄 浩 "," 男 "," 江西省抚州市
","440114199105117595","13640786427","1988-10-12","19881012","1988.10.12",
"76295626","[email protected]","[email protected]","黄浩"},
{
     " 余晓明 "," 男 "," 江 西 省 抚 州 市
","440113197803028412","13322838884","1988-10-13","19881013","1988.10.13",
"268033328","[email protected]","[email protected]","18924
889850","汽车出售"},
{
     " 张 望 "," 男 "," 北 京 市
","44018419821219673X","13640786429","1988-10-14","19881014","1988.10.14",
"76295628","[email protected]","[email protected]","张三"},
{
     " 方小明 "," 男 "," 广 州 市
","440183197602106276","13640786430","1988-10-15","19881015","1988.10.15",
"76295629","[email protected]","[email protected]","方小明"},
{
     " 张秋白 "," 男 "," 深 圳 市
","44018319790608271X","13640786431","1988-10-16","19881016","1988.10.16",
"76295630","[email protected]","[email protected]","李四"},
{
     " 王 五 "," 男 "," 江 门 市
","440105198509036000","13640786432","1988-10-17","19881017","1988.10.17",
"76295631","[email protected]","[email protected]","王五"},
{
     " 李世民 "," 男 "," 海 珠 市
","440114198611218000","13640786433","1988-10-18","19881018","1988.10.18",
"76295632","[email protected]","[email protected]","马六"},
{
     " 钟建国 "," 男 "," 北 京 市
","440111198505274000","13640786434","1988-10-19","19881019","1988.10.19",
"76295633","[email protected]","[email protected]","钟建国"},
{
     " 李 龙 "," 男 "," 广 州 市
","44011419851001515X","13640786435","1988-10-20","19881020","1988.10.20",
"76295634","[email protected]","[email protected]"," 李
龙"},
{
     " 陈 龙 "," 男 "," 深 圳 市
","440113199311063000","13640786436","1988-10-21","19881021","1988.10.21",
"76295635","[email protected]","[email protected]","陈龙"},
{
     " 马小龙 "," 男 "," 江 门 市
","440116198109195000","13640786437","1988-10-22","19881022","1988.10.22",
"76295636","[email protected]","[email protected]"," 马小龙
"},
{
     "胡万林","男"," 四 川
","440113197803028412","13640786438","1949-12-12","19491212","1949.12.12",
"76295637","[email protected]","[email protected]","胡万林"},
{
     " 丁羽心 "," 女 "," 山西沁水县
","440113197803028412","13640786439","1955-01-01","195511","1955.01.01",
"76295638","[email protected]","[email protected]"," 丁于心","
丁书苗"}
};

int sum=0;
for(int ii=0;ii<key.length;ii++){
      //遍历所有用户
sum=0;
System.out.println(key[ii][0]);
for(int i=0;i<files.length;i++){
      //遍历所有文件
f = files[i];
ism = new FileInputStream(f);
isr = new InputStreamReader(ism);
bs = new BufferedReader(isr);
info=bs.readLine();
while(info!=null){
      //遍历网页所有行
//关键字二值搜索,有为 1,无为 0
for(int jj=0;jj<key[ii].length;jj++){
      //遍历用户
的所有关键字
if((!key[ii][jj].equals("")) && 
containsAny(info,key[ii][jj]) && jj<=4){
     
 count[jj]=1;
}
if((!key[ii][jj].equals("")) && 
containsAny(info,key[ii][jj]) && jj>=5 && jj<=7){
     
 count[5]=1;
}
if((!key[ii][jj].equals("")) && 
containsAny(info,key[ii][jj]) && jj>=8 && jj<=10){
     
 count[jj-2]=1;
 }
if(jj>10 && containsAny(info,key[ii][jj])){
     
count[9]=1;
} }
info = bs.readLine();
}
//检查搜索结果,去除只有地址或性别被搜索到的网页
for(int k=0;k<count.length;k++){
     
sum+=count[k];
}
if(sum==1 && (count[1]==1 || count[2]==1)){
     
count[1]=0;
count[2]=0;
sum=0;
}
//输出搜索和计算的结果
if(sum>0){
     
double c = cos(count,weights);
System.out.print(c+"余弦值:"+f.getName()+" ");
for(int k=0;k<count.length;k++){
     
System.out.print(count[k]+" ");
count[k]=0;
}
System.out.println();
}
ism.close();
isr.close();
bs.close();
sum=0;
} }
System.out.println("end");
} }

改进后的算法:

//去除只有地址和性别被搜索到的网页
//count 数组标记各关键字的搜索情况,sum 表示搜索到的关键字数
if(sum==2 && (count[1]==1 && count[2]==1)){
     
count[1]=0; //性别改为没搜索到
count[2]=0; //地址改为每搜索到
sum=0; //搜索到的关键字数为0 }

你可能感兴趣的:(泰迪杯论文,大数据项目案例,数据挖掘,java,大数据,关键词赋权)