学习记录,内容主要来自ppt,只做重点记录,另代理模式中静态代理、动态代理详细使用(
Proxy
类中newProxyInstance()
方法,CGLB)另外发布
结构型模式(Structural Pattern)描述如何将类或者对象结合在一起形成更大的结构,就像搭积木,可以通过简单积木的组合形成复杂的、功能更为强大的结构。
结构型模式可以分为类结构型模式和对象结构型模式:
在某些情况下,一个客户不想或者不能直接引用一个对象,此时可以通过一个称之为“代理”的第三者来实现间接引用。代理对象可以在客户端和目标对象之间起到中介的作用,并且可以通过代理对象去掉客户不能看到的内容和服务或者添加客户需要的额外服务。
通过引入一个新的对象(如小图片和远程代理对象)来实现对真实对象的操作或者将新的对象作为真实对象的一个替身,这种实现机制即为代理模式,通过引入代理对象来间接访问一个对象,这就是代理模式的模式动机。
代理模式(Proxy Pattern) :给某一个对象提供一个代理,并由代理对象控制对原对象的引用。代理模式的英文叫做Proxy或Surrogate,它是一种对象结构型模式。
代理模式包含如下角色:
代理模式示意结构图比较简单,般可以简化为如下图所示,但是在现实中要复杂很多
根据代理模式的使用目的,常见的代理模式有以下几种类型:
远程代理:远程代理可以将网络的细节隐藏起来,使得客户端不必考虑网络的存在。客户完全可以认为被代理的远程业务对象是局域的而不是远程的,而远程代理对象承担了大部分的网络通信工作。
虚拟代理:当一个对象的加载十分耗费资源的时候,虚拟代理的优势就非常明显地体现出来了。虚拟代理模式是一种内存节省技术,那些占用大量内存或处理复杂的对象将推迟到使用它的时候才创建。
动态代理
动态代理是一种较为高级的代理模式**,它的典型应用就是Spring AOP**。
在传统的代理模式中,客户端通过Proxy
调用RealSubject
类的request()
方法,同时还在代理类中封装了其他方法(如preRequest()
和postRequest()
),可以处理一些其他问题。
如果按照这种方法使用代理模式,那么真实主题角色必须是事先已经存在的,并将其作为代理对象的内部成员属性。如果一个真实主题角色必须对应一个代理主题角色,这将导致系统中的类个数急剧增加,因此需要想办法减少系统中类的个数,此外,如何在事先不知道真实主题角色的情况下使用代理主题角色,这都是动态代理需要解决的问题。
Java动态代理实现相关类位于java.lang.reflect
包,主要涉及两个类:
InvocationHandler接口。**它是代理实例的调用处理程序实现的接口,**该接口中定义了如下方法:
public Object invoke (Object proxy, Method method, Object[] args) throws Throwable;
invoke()
方法中第一个参数proxy
表示代理类,第二个参数method
表示需要代理的方法,第三个参数args表示代理方法的参数数组。
Proxy类。该类即为动态代理类,该类最常用的方法为:
public static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler h) throws IllegalArgumentException;
newProxyInstance()
方法用于根据传入的接口类型interfaces
返回一个动态创建的代理类的实例,方法中第一个参数loader
表示代理类的类加载器,第二个参数interfaces
表示代理类实现的接口列表(与真实主题类的接口列表一致),第三个参数h表示所指派的调用处理程序类。
对于有两个变化维度(即两个变化的原因)的系统,采用方案二来进行设计系统中类的个数更少,且系统扩展更为方便。设计方案二即是桥接模式的应用。桥接模式将继承关系转换为关联关系,从而降低了类与类之间的耦合,减少了代码编写量。
桥接模式(Bridge Pattern
):将抽象部分与它的实现部分分离,使它们都可以独立地变化。它是一种对象结构型模式,又称为柄体(Handle and Body)模式或接口(Interface)模式。
理解桥接模式,重点需要理解如何将抽象化(Abstraction)与实现化(Implementation)脱耦,使得二者可以独立地变化。
抽象化:抽象化就是忽略一些信息,把不同的实体当作同样的实体对待。在面向对象中,将对象的共同性质抽取出来形成类的过程即为抽象化的过程。
实现化:针对抽象化给出的具体实现,就是实现化,抽象化与实现化是一对互逆的概念,实现化产生的对象比抽象化更具体,是对抽象化事物的进一步具体化的产物。
脱耦:脱耦就是将抽象化和实现化之间的耦合解脱开,或者说是将它们之间的强关联改换成弱关联,将两个角色之间的继承关系改为关联关系。桥接模式中的所谓脱耦,就是指在一个软件系统的抽象化和实现化之间使用关联关系(组合或者聚合关系)而不是继承关系,从而使两者可以相对独立地变化,这就是桥接模式的用意。
桥接模式包含如下角色:
典型的实现类接口代码:
public interface Implementor{
public void operationImpl();
}
典型的抽象类代码:
public abstract class Abstraction{
protected Implementor impl;
public void setImpl(Implementor impl){
this.impl=impl;
}
public abstract void operation();
典型的扩充抽象类代码:
public class RefinedAbstraction extends Abstraction{
public void operation(){
//代码
impl.operationImpl();
//代码
}
}
桥接模式的优点
分离抽象接口及其实现部分。
桥接模式有时类似于多继承方案,但是多继承方案违背了类的单一职责原则(即一个类只有一个变化的原因),复用性比较差,而且多继承结构中类的个数非常庞大,桥接模式是比多继承方案更好的解决方法。
桥接模式提高了系统的可扩充性,在两个变化维度中任意扩展一个维度,都不需要修改原有系统。
实现细节对客户透明,可以对用户隐藏实现细节。
桥接模式的缺点
桥接模式的引入会增加系统的理解与设计难度,由于聚合关联关系建立在抽象层,要求开发者针对抽象进行设计与编程。
桥接模式要求正确识别出系统中两个独立变化的维度,因此其使用范围具有一定的局限性。
在以下情况下可以使用桥接模式:
类适配器模式、对象适配器模式(常用)
在软件开发中采用类似于电源适配器的设计和编码技巧被称为适配器模式。
通常情况下,客户端可以通过目标类的接口访问它所提供的服务。有时,现有的类可以满足客户类的功能需要,但是它所提供的接口不一定是客户类所期望的,这可能是因为现有类中方法名与目标类中定义的方法名不一致等原因所导致的。
在这种情况下,现有的接口需要转化为客户类期望的接口,这样保证了对现有类的重用。如果不进行这样的转化,客户类就不能利用现有类所提供的功能,适配器模式可以完成这样的转化。
在适配器模式中可以定义一个包装类,包装不兼容接口的对象,这个包装类指的就是适配器(Adapter),它所包装的对象就是适配者(Adaptee),即被适配的类。
适配器提供客户类需要的接口,适配器的实现就是把客户类的请求转化为对适配者的相应接口的调用。也就是说:当客户类调用适配器的方法时,在适配器类的内部将调用适配者类的方法,而这个过程对客户类是透明的,客户类并不直接访问适配者类。因此,适配器可以使由于接口不兼容而不能交互的类可以一起工作。这就是适配器模式的模式动机。
适配器模式(Adapter Pattern) :将一个接口转换成客户希望的另一个接口,适配器模式使接口不兼容的那些类可以一起工作,其别名为包装器(Wrapper)。适配器模式既可以作为类结构型模式,也可以作为对象结构型模式。
适配器模式包含如下角色:
典型的类适配器代码
public class Adapter extends Adaptee implements Target
{
public void request()
{
specificRequest();
}
}
在以下情况下可以使用适配器模式:
在Spring AOP框架中,对BeforeAdvice、AfterAdvice、ThrowsAdvice三种通知类型借助适配器模式来实现。
默认适配器、双向适配器
一般有两种方式可以实现给一个类或对象增加行为:
装饰模式以对客户透明的方式动态地给一个对象附加上更多的责任,换言之,客户端并不会觉得对象在装饰前和装饰后有什么不同。装饰模式可以在不需要创造更多子类的情况下,将对象的功能加以扩展。这就是装饰模式的模式动机。
装饰模式(Decorator Pattern) :动态地给一个对象增加一些额外的职责(Responsibility),就增加对象功能来说,装饰模式比生成子类实现更为灵活。其别名也可以称为包装器(Wrapper),与适配器模式的别名相同,但它们适用于不同的场合。根据翻译的不同,装饰模式也有人称之为“油漆工模式”,它是一种对象结构型模式。
使用装饰模式进行系统设计时将产生很多小对象,这些对象的区别在于它们之间相互连接的方式有所不同,而不是它们的类或者属性值有所不同,同时还将产生很多具体装饰类。这些装饰类和小对象的产生将增加系统的复杂度,加大学习与理解的难度。
这种比继承更加灵活机动的特性,也同时意味着装饰模式比继承更加易于出错,排错也很困难,对于多次装饰的对象,调试时寻找错误可能需要逐级排查,较为烦琐。
在以下情况下可以使用装饰模式:
javax.swing
、 Java IO
装饰模式的简化-需要注意的问题
在透明装饰模式中,要求客户端完全针对抽象编程,装饰模式的透明性要求客户端程序不应该声明具体构件类型和具体装饰类型,而应该全部声明为抽象构件类型。
大多数装饰模式都是**半透明(semi-transparent)的装饰模式,而不是完全透明(transparent)**的。即允许用户在客户端声明具体装饰者类型的对象,调用在具体装饰者中新增的方法。
外观模式(Facade Pattern
):外部与一个子系统的通信必须通过一个统一的外观对象进行,为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。外观模式又称为门面模式,它是一种对象结构型模式。
典型的外观角色代码:
public class Facade
{
private SubSystemA obj1 = new SubSystemA();
private SubSystemB obj2 = new SubSystemB();
private SubSystemC obj3 = new SubSystemC();
public void method()
{
obj1.method();
obj2.method();
obj3.method();
}
}
外观模式的优点
外观模式的缺点
在以下情况下可以使用外观模式:
模式应用:
外观模式应用于JDBC数据库操作 、
Session外观模式是外观模式在Java EE框架中的应用。