pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现

<>

小白学PyTorch | 11 MobileNet详解及PyTorch实现

小白学PyTorch | 10 pytorch常见运算详解

小白学PyTorch | 9 tensor数据结构与存储结构

小白学PyTorch | 8 实战之MNIST小试牛刀

小白学PyTorch | 7 最新版本torchvision.transforms常用API翻译与讲解

小白学PyTorch | 6 模型的构建访问遍历存储(附代码)

小白学PyTorch | 5 torchvision预训练模型与数据集全览

小白学PyTorch | 4 构建模型三要素与权重初始化

小白学PyTorch | 3 浅谈Dataset和Dataloader

小白学PyTorch | 2 浅谈训练集验证集和测试集

小白学PyTorch | 1 搭建一个超简单的网络

小白学PyTorch | 动态图与静态图的浅显理解

参考目录:

  • 1 网络结构

  • 2 参数量分析

  • 3 PyTorch实现与解析

上一节课讲解了MobileNet的一个DSC深度可分离卷积的概念,希望大家可以在实际的任务中使用这种方法,现在再来介绍EfficientNet的另外一个基础知识,Squeeze-and-Excitation Networks压缩-激活网络

1 网络结构

pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第1张图片

可以看出来,左边的图是一个典型的Resnet的结构,Resnet这个残差结构特征图求和而不是通道拼接,这一点可以注意一下

这个SENet结构式融合在残差网络上的,我来分析一下上图右边的结构:

  • 输出特征图假设shape是的;
  • 一般的Resnet就是这个特征图经过残差网络的基本组块,得到了输出特征图,然后输入特征图和输入特征图通过残差结构连在一起(通过加和的方式连在一起);
  • SE模块就是输出特征图先经过一个全局池化层,shape从变成了,这个就变成了一个全连接层的输入啦
    • 压缩Squeeze:先放到第一个全连接层里面,输入个元素,输出,r是一个事先设置的参数;

    • 激活Excitation:在接上一个全连接层,输入是个神经元,输出是个元素,实现激活的过程;

  • 现在我们有了一个个元素的经过了两层全连接层的输出,这个C个元素,刚好表示的是原来输出特征图中C个通道的一个权重值,所以我们让C个通道上的像素值分别乘上全连接的C个输出,这个步骤在图中称为Scale而这个调整过特征图每一个通道权重的特征图是SE-Resnet的输出特征图,之后再考虑残差接连的步骤。

在原文论文中还有另外一个结构图,供大家参考:pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第2张图片

2 参数量分析

每一个卷积层都增加了额外的两个全连接层,不够好在全连接层的参数非常小,所以直观来看应该整体不会增加很多的计算量。Resnet50的参数量为25M的大小,增加了SE模块,增加了2.5M的参数量,所以大概增加了10%左右,而且这2.5M的参数主要集中在final stage的se模块,因为在最后一个卷积模块中,特征图拥有最大的通道数,所以这个final stage的参数量占据了增加的2.5M参数的96%。

这里放一个几个网络结构的对比:pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第3张图片

3 PyTorch实现与解析

先上完整版的代码,大家可以复制本地IDE跑一跑,如果代码有什么问题可以联系我:

import torch
import torch.nn as nn
import torch.nn.functional as F

class PreActBlock(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super(PreActBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)

        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
            )

        # SE layers
        self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)
        self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))

        # Squeeze
        w = F.avg_pool2d(out, out.size(2))
        w = F.relu(self.fc1(w))
        w = F.sigmoid(self.fc2(w))
        # Excitation
        out = out * w

        out += shortcut
        return out


class SENet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(SENet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block,  64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def SENet18():
    return SENet(PreActBlock, [2,2,2,2])


net = SENet18()
y = net(torch.randn(1,3,32,32))
print(y.size())
print(net)

输出和注解我都整理了一下:pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第4张图片

pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第5张图片 - END - pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第6张图片

往期精彩回顾

适合初学者入门人工智能的路线及资料下载

机器学习及深度学习笔记等资料打印

机器学习在线手册

深度学习笔记专辑

《统计学习方法》的代码复现专辑

AI基础下载

机器学习的数学基础专辑

获取一折本站知识星球优惠券,复制链接直接打开:

https://t.zsxq.com/662nyZF

本站qq群704220115。

加入微信群请扫码进群(如果是博士或者准备读博士请说明):

pytorch padding_【小白学PyTorch】12.SENet详解及PyTorch实现_第7张图片

你可能感兴趣的:(pytorch,padding,pytorch打印网络结构)