深度学习与卷积神经网络

**

自己学习笔记

深度学习

概述
深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域,近年来在语音识别、计算机视觉等多类应用中取得突破性的进展。其动机在于建立模型模拟人类大脑的神经连接结构,在处理图像、声音和文本这些信号时,通过多个变换阶段分层对数据特征进行描述,进而给出数据的解释。

深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。从而对样本进行分类和预测,提高分类和预测的精度。这个过程是通过深度学习模型的手段达到特征学习的目的。深度学习模型和传统浅层学习模型的区别在于:(1)、深度学习模型结构含有更多的层次,包含隐层节点的层数通常在5层以上,有时甚至包含多达10层以上的隐藏节点;(2)、明确强调了特征学习对于深度模型的重要性,即通过逐层特征提取,将数据样本在原空间的特征变换到一个新的特征空间来表示初始数据,这使得分类或预测问题更加容易实现。和人工设计的特征提取方法相比,利用深度模型学习得到的数据特征对大数据的丰富内在信息更有代表性。

深度学习之所以被称为"深度",是相对支持向量机(supportvector machine, SVM)、提升方法(boosting)、最大熵方法等"浅层学习"方法而言的,深度学习所学得的模型中,非线性操作的层级数更多。浅层学习依靠人工经验抽取样本特征,网络模型学习后获得的是没有层次结构的单层特征;而深度学习通过对原始信号进行逐层特征变换,将样本在原空间的特征表示变换到新的特征空间,自动地学习得到层次化的特征表示,从而更有利于分类或特征的可视化。深度学习理论的另外一个理论动机是:如果一个函数可用k层结构以简洁的形式表达,那么用k-1层的结构表达则可能需要指数级数量的参数(相对于输入信号),且泛化能力不足。

深度学习的基本思想:假设有系统S,它有n层(S1,…,Sn),输入为I,输出为O,可形象的表示为:I=>S1=>S2=>… =>Sn=>O。为了使输出O尽可能的接近输入I,可以通过调整系统中的参数,这样就可以得到输入I的一系列层次特征S1,S2,…,Sn。对于堆叠的多个层,其中一层的输出作为其下一层的输入,以实现对输入数据的分级表达,这就是深度学习的基本思想。

深度学习的模型有很多,深度神经网络可以分为三类:
前馈深度网络,由多个编码器层叠加而来,如(MPL,CNN)
反馈深度网络,由多个解码器层叠加而成,如(DN、HSC)
双向深度网络,通过叠加多个编码器层和解码器层构成,如(DBM,DBN,SAE)

你可能感兴趣的:(深度学习)