Lifecycle是一个持有组件生命周期状态信息的类,并且允许其他对象观察该状态.
本文基于 Lifecycle 2.0.0版本,Android API 28.
首先我们先看一下如何使用Lifecycle实现生命周期的监听.
基础用法
public class HippoX implements LifecycleObserver {
private static final String TAG_LOG = "HippoX";
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
public void init() {
Log.e(TAG_LOG, "init exec");
}
}
public class MainActivity extends AppCompatActivity {
private static final String TAG_LOG = "HippoX";
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
getLifecycle().addObserver(new HippoX());
}
@Override
protected void onResume() {
super.onResume();
Log.e(TAG_LOG, "onResumes execute");
}
}
Logcat日志:
E/HippoX: onResumes execute
E/HippoX: init exec
日志打印结果表明上述代码确实实现了观察生命周期的功能.
别问我为啥这样就监听成功了,往下看.
生命周期事件及状态
Lifecycle使用两个主要枚举来跟踪其关联组件的生命周期状态.
- Event 描述从框架和Lifecycle类中派发的生命周期事件.
- State 描述Lifecycle对象跟踪的组件的当前状态.
Lifecycle.Event
public enum Event {
ON_CREATE, //用于匹配生命周期所有者的onCreate事件.
ON_START, //用于匹配生命周期所有者的onStart事件.
ON_RESUME, //用于匹配生命周期所有者的onResume事件.
ON_PAUSE, //用于匹配生命周期所有者的onCreate事件.
ON_STOP, //用于匹配生命周期所有者的onStop事件.
ON_DESTROY, //用于匹配生命周期所有者的onDestroy事件.
ON_ANY //用于匹配生命周期所有者的所有事件.
}
Lifecycle.State
public enum State {
DESTROYED, //表示生命周期所有者创建的状态.对于Activity来说,在onCreate执行之后,onStop执行之前.
INITIALIZED, //表示生命周期所有者销毁的状态.
CREATED, //表示生命周期所有者初始化的状态.
STARTED, //表示生命周期所有者恢复的状态.
RESUMED; //表示生命周期所有者启动的状态.
public boolean isAtLeast(@NonNull State state) { //比较此状态是否大于或等于给定状态
return compareTo(state) >= 0;
}
}
Event与State的关系
生命周期所有者和观察者
LifecycleOwner 生命周期所有者
public interface LifecycleOwner {
@NonNull
Lifecycle getLifecycle(); //返回lifecycle
}
官方文档的描述是持有Android生命周期的类,通过实现该类可以在非Activity和Fragment中来处理生命周期事件.
注:Activity和Fragment都实现了该接口,并提供
LifecycleObserver 生命周期观察者
public interface LifecycleObserver {
}
官方文档的描述是将实现该接口的类标记为生命周期观察者,且依赖于通过OnLifecycleEvent
注解实现的方法.
先了解到这里,我们开始正式的分析lifecycle是如何实现生命周期的监听的.
Activity和Fragment的实现过程基本相同,我们在这里就分析Activity.
首先我们由MainActivity的getLifecycle()
方法往里跟,最终找到他的父父父类ComponentActivity
实现了LifecycleOwner
接口.
public class ComponentActivity extends Activity
implements LifecycleOwner, KeyEventDispatcher.Component {
private LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
...
@Override
@SuppressWarnings("RestrictedApi")
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ReportFragment.injectIfNeededIn(this);
}
@Override
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
}
其中比较重要的是LifecycleRegistry
类和ReportFragment
.我们再来继续分析.
LifecycleRegistry
LifecycleRegistry是Lifecycle的实现类,能够管理多个生命周期观察者.
提供的主要方法如下:
- void addObserver(LifecycleObserver observer) 添加一个生命周期观察者(下文简称观察者),当生命周期所有者状态改变时将会进行通知.
- Lifecycle.State getCurrentState() 获取生命周期的当前状态.
- int getObserverCount() 返回观察者的个数.
- void handleLifecycleEvent(Lifecycle.Event event) 设置当前状态并通知观察者.
- void removeObserver(LifecycleObserver observer) 从观察者列表中移除指定的观察者.
- void setCurrentState(Lifecycle.State state) 设置生命周期为指定的状态,并将事件分派给观察者.
ReportFragment
public class ReportFragment extends Fragment {
private static final String REPORT_FRAGMENT_TAG = "androidx.lifecycle"
+ ".LifecycleDispatcher.report_fragment_tag";
public static void injectIfNeededIn(Activity activity) {
// ProcessLifecycleOwner should always correctly work and some activities may not extend
// FragmentActivity from support lib, so we use framework fragments for activities
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
static ReportFragment get(Activity activity) {
return (ReportFragment) activity.getFragmentManager().findFragmentByTag(
REPORT_FRAGMENT_TAG);
}
...
@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
dispatchCreate(mProcessListener);
dispatch(Lifecycle.Event.ON_CREATE);
}
@Override
public void onStart() {
super.onStart();
dispatchStart(mProcessListener);
dispatch(Lifecycle.Event.ON_START);
}
@Override
public void onResume() {
super.onResume();
dispatchResume(mProcessListener);
dispatch(Lifecycle.Event.ON_RESUME);
}
@Override
public void onPause() {
super.onPause();
dispatch(Lifecycle.Event.ON_PAUSE);
}
@Override
public void onStop() {
super.onStop();
dispatch(Lifecycle.Event.ON_STOP);
}
@Override
public void onDestroy() {
super.onDestroy();
dispatch(Lifecycle.Event.ON_DESTROY);
// just want to be sure that we won't leak reference to an activity
mProcessListener = null;
}
private void dispatch(Lifecycle.Event event) {
Activity activity = getActivity();
if (activity instanceof LifecycleRegistryOwner) {
((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
return;
}
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
}
...
}
查看源码可以知道,lifecycle是通过ReportFragment
来实现生命周期的监听的,重写了生命周期的回调方法,在生命周期回调方法的内部调用dispatch
的方法来派发生命周期事件.并且ComponentActivity
的onCreate方法中通过injectIfNeededIn
方法进行了注入.
接下来我们分析一下我们实现了LifecycleObserver
接口的类是如何得知生命周期变化的.
LifecycleRegistry
public class LifecycleRegistry extends Lifecycle {
private static final String LOG_TAG = "LifecycleRegistry";
/**
* Custom list that keeps observers and can handle removals / additions during traversal.
*
* Invariant: at any moment of time for observer1 & observer2:
* if addition_order(observer1) < addition_order(observer2), then
* state(observer1) >= state(observer2),
*/
private FastSafeIterableMap mObserverMap =
new FastSafeIterableMap<>();
/**
* Current state
*/
private State mState;
/**
* The provider that owns this Lifecycle.
* Only WeakReference on LifecycleOwner is kept, so if somebody leaks Lifecycle, they won't leak
* the whole Fragment / Activity. However, to leak Lifecycle object isn't great idea neither,
* because it keeps strong references on all other listeners, so you'll leak all of them as
* well.
*/
private final WeakReference mLifecycleOwner;
private int mAddingObserverCounter = 0;
private boolean mHandlingEvent = false;
private boolean mNewEventOccurred = false;
// we have to keep it for cases:
// void onStart() {
// mRegistry.removeObserver(this);
// mRegistry.add(newObserver);
// }
// newObserver should be brought only to CREATED state during the execution of
// this onStart method. our invariant with mObserverMap doesn't help, because parent observer
// is no longer in the map.
private ArrayList mParentStates = new ArrayList<>();
/**
* Creates a new LifecycleRegistry for the given provider.
*
* You should usually create this inside your LifecycleOwner class's constructor and hold
* onto the same instance.
*
* @param provider The owner LifecycleOwner
*/
public LifecycleRegistry(@NonNull LifecycleOwner provider) {
mLifecycleOwner = new WeakReference<>(provider);
mState = INITIALIZED;
}
/**
* Moves the Lifecycle to the given state and dispatches necessary events to the observers.
*
* @param state new state
*/
@SuppressWarnings("WeakerAccess")
@MainThread
public void markState(@NonNull State state) {
moveToState(state);
}
/**
* Sets the current state and notifies the observers.
*
* Note that if the {@code currentState} is the same state as the last call to this method,
* calling this method has no effect.
*
* @param event The event that was received
*/
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}
private void moveToState(State next) {
if (mState == next) {
return;
}
mState = next;
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
sync();
mHandlingEvent = false;
}
private boolean isSynced() {
if (mObserverMap.size() == 0) {
return true;
}
State eldestObserverState = mObserverMap.eldest().getValue().mState;
State newestObserverState = mObserverMap.newest().getValue().mState;
return eldestObserverState == newestObserverState && mState == newestObserverState;
}
private State calculateTargetState(LifecycleObserver observer) {
Entry previous = mObserverMap.ceil(observer);
State siblingState = previous != null ? previous.getValue().mState : null;
State parentState = !mParentStates.isEmpty() ? mParentStates.get(mParentStates.size() - 1)
: null;
return min(min(mState, siblingState), parentState);
}
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
private void popParentState() {
mParentStates.remove(mParentStates.size() - 1);
}
private void pushParentState(State state) {
mParentStates.add(state);
}
@Override
public void removeObserver(@NonNull LifecycleObserver observer) {
// we consciously decided not to send destruction events here in opposition to addObserver.
// Our reasons for that:
// 1. These events haven't yet happened at all. In contrast to events in addObservers, that
// actually occurred but earlier.
// 2. There are cases when removeObserver happens as a consequence of some kind of fatal
// event. If removeObserver method sends destruction events, then a clean up routine becomes
// more cumbersome. More specific example of that is: your LifecycleObserver listens for
// a web connection, in the usual routine in OnStop method you report to a server that a
// session has just ended and you close the connection. Now let's assume now that you
// lost an internet and as a result you removed this observer. If you get destruction
// events in removeObserver, you should have a special case in your onStop method that
// checks if your web connection died and you shouldn't try to report anything to a server.
mObserverMap.remove(observer);
}
/**
* The number of observers.
*
* @return The number of observers.
*/
@SuppressWarnings("WeakerAccess")
public int getObserverCount() {
return mObserverMap.size();
}
@NonNull
@Override
public State getCurrentState() {
return mState;
}
static State getStateAfter(Event event) {
switch (event) {
case ON_CREATE:
case ON_STOP:
return CREATED;
case ON_START:
case ON_PAUSE:
return STARTED;
case ON_RESUME:
return RESUMED;
case ON_DESTROY:
return DESTROYED;
case ON_ANY:
break;
}
throw new IllegalArgumentException("Unexpected event value " + event);
}
private static Event downEvent(State state) {
switch (state) {
case INITIALIZED:
throw new IllegalArgumentException();
case CREATED:
return ON_DESTROY;
case STARTED:
return ON_STOP;
case RESUMED:
return ON_PAUSE;
case DESTROYED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " + state);
}
private static Event upEvent(State state) {
switch (state) {
case INITIALIZED:
case DESTROYED:
return ON_CREATE;
case CREATED:
return ON_START;
case STARTED:
return ON_RESUME;
case RESUMED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " + state);
}
private void forwardPass(LifecycleOwner lifecycleOwner) {
Iterator> ascendingIterator =
mObserverMap.iteratorWithAdditions();
while (ascendingIterator.hasNext() && !mNewEventOccurred) {
Entry entry = ascendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
pushParentState(observer.mState);
observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState));
popParentState();
}
}
}
private void backwardPass(LifecycleOwner lifecycleOwner) {
Iterator> descendingIterator =
mObserverMap.descendingIterator();
while (descendingIterator.hasNext() && !mNewEventOccurred) {
Entry entry = descendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
Event event = downEvent(observer.mState);
pushParentState(getStateAfter(event));
observer.dispatchEvent(lifecycleOwner, event);
popParentState();
}
}
}
// happens only on the top of stack (never in reentrance),
// so it doesn't have to take in account parents
private void sync() {
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
Log.w(LOG_TAG, "LifecycleOwner is garbage collected, you shouldn't try dispatch "
+ "new events from it.");
return;
}
while (!isSynced()) {
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
backwardPass(lifecycleOwner);
}
Entry newest = mObserverMap.newest();
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass(lifecycleOwner);
}
}
mNewEventOccurred = false;
}
static State min(@NonNull State state1, @Nullable State state2) {
return state2 != null && state2.compareTo(state1) < 0 ? state2 : state1;
}
static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}
}
从上面的分析中我们得知,ReportFragment的dispatch
方法中,调用了LifecycleRegistry类的handleLifecycleEvent
方法.该方法接收了传递的事件后调用getStateAfter
获取了下一状态并调用moveToState
更新,然后调用sync
方法通知了生命周期观察者,也就是我们实现了LifecycleObserver接口的类.
在sync
方法中,通过对比当前状态和上一状态来完成当前State的状态更新,在forwardPass
和backwardPass
方法中我们就可以看到事件派发方法了,ObserverWithState内部类的dispatchEvent
方法.
static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}
}
@RestrictTo(RestrictTo.Scope.LIBRARY)
@SuppressWarnings({"WeakerAccess", "unused"})
public interface GenericLifecycleObserver extends LifecycleObserver {
/**
* Called when a state transition event happens.
*
* @param source The source of the event
* @param event The event
*/
void onStateChanged(LifecycleOwner source, Lifecycle.Event event);
}
ObserverWithState类的dispatchEvent方法调用了GenericLifecycleObserver
接口的onStateChanged
方法,那么这个mLifecycleObserver是从何而来的呢,在ObserverWithState
方法中通过Lifecycling.getCallback(observer)
方法获得,继续往下跟.
@RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
public class Lifecycling {
@RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
public class Lifecycling {
private static final int REFLECTIVE_CALLBACK = 1;
private static final int GENERATED_CALLBACK = 2;
private static Map sCallbackCache = new HashMap<>();
private static Map>> sClassToAdapters =
new HashMap<>();
@NonNull
static GenericLifecycleObserver getCallback(Object object) {
if (object instanceof FullLifecycleObserver) {
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object);
}
if (object instanceof GenericLifecycleObserver) {
return (GenericLifecycleObserver) object;
}
final Class> klass = object.getClass();
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
List> constructors =
sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(
constructors.get(0), object);
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i++) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
return new CompositeGeneratedAdaptersObserver(adapters);
}
return new ReflectiveGenericLifecycleObserver(object);
}
private static GeneratedAdapter createGeneratedAdapter(
Constructor extends GeneratedAdapter> constructor, Object object) {
//noinspection TryWithIdenticalCatches
try {
return constructor.newInstance(object);
} catch (IllegalAccessException e) {
throw new RuntimeException(e);
} catch (InstantiationException e) {
throw new RuntimeException(e);
} catch (InvocationTargetException e) {
throw new RuntimeException(e);
}
}
@Nullable
private static Constructor extends GeneratedAdapter> generatedConstructor(Class> klass) {
try {
Package aPackage = klass.getPackage();
String name = klass.getCanonicalName();
final String fullPackage = aPackage != null ? aPackage.getName() : "";
final String adapterName = getAdapterName(fullPackage.isEmpty() ? name :
name.substring(fullPackage.length() + 1));
@SuppressWarnings("unchecked") final Class extends GeneratedAdapter> aClass =
(Class extends GeneratedAdapter>) Class.forName(
fullPackage.isEmpty() ? adapterName : fullPackage + "." + adapterName);
Constructor extends GeneratedAdapter> constructor =
aClass.getDeclaredConstructor(klass);
if (!constructor.isAccessible()) {
constructor.setAccessible(true);
}
return constructor;
} catch (ClassNotFoundException e) {
return null;
} catch (NoSuchMethodException e) {
// this should not happen
throw new RuntimeException(e);
}
}
private static int getObserverConstructorType(Class> klass) {
if (sCallbackCache.containsKey(klass)) {
return sCallbackCache.get(klass);
}
int type = resolveObserverCallbackType(klass);
sCallbackCache.put(klass, type);
return type;
}
private static int resolveObserverCallbackType(Class> klass) {
// anonymous class bug:35073837
if (klass.getCanonicalName() == null) {
return REFLECTIVE_CALLBACK;
}
Constructor extends GeneratedAdapter> constructor = generatedConstructor(klass);
if (constructor != null) {
sClassToAdapters.put(klass, Collections
.>singletonList(constructor));
return GENERATED_CALLBACK;
}
boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass);
if (hasLifecycleMethods) {
return REFLECTIVE_CALLBACK;
}
Class> superclass = klass.getSuperclass();
List> adapterConstructors = null;
if (isLifecycleParent(superclass)) {
if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass));
}
for (Class> intrface : klass.getInterfaces()) {
if (!isLifecycleParent(intrface)) {
continue;
}
if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
if (adapterConstructors == null) {
adapterConstructors = new ArrayList<>();
}
adapterConstructors.addAll(sClassToAdapters.get(intrface));
}
if (adapterConstructors != null) {
sClassToAdapters.put(klass, adapterConstructors);
return GENERATED_CALLBACK;
}
return REFLECTIVE_CALLBACK;
}
private static boolean isLifecycleParent(Class> klass) {
return klass != null && LifecycleObserver.class.isAssignableFrom(klass);
}
/**
* Create a name for an adapter class.
*/
public static String getAdapterName(String className) {
return className.replace(".", "_") + "_LifecycleAdapter";
}
private Lifecycling() {
}
}
}
我们可以看见,在getCallback
方法中,是通过反射来实现的,因为我们是实现的LifecycleObserver接口,所以最后我们得到的是ReflectiveGenericLifecycleObserver
,接着往下跟.
class ReflectiveGenericLifecycleObserver implements GenericLifecycleObserver {
private final Object mWrapped;
private final CallbackInfo mInfo;
ReflectiveGenericLifecycleObserver(Object wrapped) {
mWrapped = wrapped;
mInfo = ClassesInfoCache.sInstance.getInfo(mWrapped.getClass());
}
@Override
public void onStateChanged(LifecycleOwner source, Event event) {
mInfo.invokeCallbacks(source, event, mWrapped);
}
}
class ClassesInfoCache {
static ClassesInfoCache sInstance = new ClassesInfoCache();
private static final int CALL_TYPE_NO_ARG = 0;
private static final int CALL_TYPE_PROVIDER = 1;
private static final int CALL_TYPE_PROVIDER_WITH_EVENT = 2;
private final Map mCallbackMap = new HashMap<>();
private final Map mHasLifecycleMethods = new HashMap<>();
boolean hasLifecycleMethods(Class klass) {
if (mHasLifecycleMethods.containsKey(klass)) {
return mHasLifecycleMethods.get(klass);
}
Method[] methods = getDeclaredMethods(klass);
for (Method method : methods) {
OnLifecycleEvent annotation = method.getAnnotation(OnLifecycleEvent.class);
if (annotation != null) {
// Optimization for reflection, we know that this method is called
// when there is no generated adapter. But there are methods with @OnLifecycleEvent
// so we know that will use ReflectiveGenericLifecycleObserver,
// so we createInfo in advance.
// CreateInfo always initialize mHasLifecycleMethods for a class, so we don't do it
// here.
createInfo(klass, methods);
return true;
}
}
mHasLifecycleMethods.put(klass, false);
return false;
}
private Method[] getDeclaredMethods(Class klass) {
try {
return klass.getDeclaredMethods();
} catch (NoClassDefFoundError e) {
throw new IllegalArgumentException("The observer class has some methods that use "
+ "newer APIs which are not available in the current OS version. Lifecycles "
+ "cannot access even other methods so you should make sure that your "
+ "observer classes only access framework classes that are available "
+ "in your min API level OR use lifecycle:compiler annotation processor.", e);
}
}
CallbackInfo getInfo(Class klass) {
CallbackInfo existing = mCallbackMap.get(klass);
if (existing != null) {
return existing;
}
existing = createInfo(klass, null);
return existing;
}
private void verifyAndPutHandler(Map handlers,
MethodReference newHandler, Lifecycle.Event newEvent, Class klass) {
Lifecycle.Event event = handlers.get(newHandler);
if (event != null && newEvent != event) {
Method method = newHandler.mMethod;
throw new IllegalArgumentException(
"Method " + method.getName() + " in " + klass.getName()
+ " already declared with different @OnLifecycleEvent value: previous"
+ " value " + event + ", new value " + newEvent);
}
if (event == null) {
handlers.put(newHandler, newEvent);
}
}
private CallbackInfo createInfo(Class klass, @Nullable Method[] declaredMethods) {
Class superclass = klass.getSuperclass();
Map handlerToEvent = new HashMap<>();
if (superclass != null) {
CallbackInfo superInfo = getInfo(superclass);
if (superInfo != null) {
handlerToEvent.putAll(superInfo.mHandlerToEvent);
}
}
Class[] interfaces = klass.getInterfaces();
for (Class intrfc : interfaces) {
for (Map.Entry entry : getInfo(
intrfc).mHandlerToEvent.entrySet()) {
verifyAndPutHandler(handlerToEvent, entry.getKey(), entry.getValue(), klass);
}
}
Method[] methods = declaredMethods != null ? declaredMethods : getDeclaredMethods(klass);
boolean hasLifecycleMethods = false;
for (Method method : methods) {
OnLifecycleEvent annotation = method.getAnnotation(OnLifecycleEvent.class);
if (annotation == null) {
continue;
}
hasLifecycleMethods = true;
Class>[] params = method.getParameterTypes();
int callType = CALL_TYPE_NO_ARG;
if (params.length > 0) {
callType = CALL_TYPE_PROVIDER;
if (!params[0].isAssignableFrom(LifecycleOwner.class)) {
throw new IllegalArgumentException(
"invalid parameter type. Must be one and instanceof LifecycleOwner");
}
}
Lifecycle.Event event = annotation.value();
if (params.length > 1) {
callType = CALL_TYPE_PROVIDER_WITH_EVENT;
if (!params[1].isAssignableFrom(Lifecycle.Event.class)) {
throw new IllegalArgumentException(
"invalid parameter type. second arg must be an event");
}
if (event != Lifecycle.Event.ON_ANY) {
throw new IllegalArgumentException(
"Second arg is supported only for ON_ANY value");
}
}
if (params.length > 2) {
throw new IllegalArgumentException("cannot have more than 2 params");
}
MethodReference methodReference = new MethodReference(callType, method);
verifyAndPutHandler(handlerToEvent, methodReference, event, klass);
}
CallbackInfo info = new CallbackInfo(handlerToEvent);
mCallbackMap.put(klass, info);
mHasLifecycleMethods.put(klass, hasLifecycleMethods);
return info;
}
@SuppressWarnings("WeakerAccess")
static class CallbackInfo {
final Map> mEventToHandlers;
final Map mHandlerToEvent;
CallbackInfo(Map handlerToEvent) {
mHandlerToEvent = handlerToEvent;
mEventToHandlers = new HashMap<>();
for (Map.Entry entry : handlerToEvent.entrySet()) {
Lifecycle.Event event = entry.getValue();
List methodReferences = mEventToHandlers.get(event);
if (methodReferences == null) {
methodReferences = new ArrayList<>();
mEventToHandlers.put(event, methodReferences);
}
methodReferences.add(entry.getKey());
}
}
@SuppressWarnings("ConstantConditions")
void invokeCallbacks(LifecycleOwner source, Lifecycle.Event event, Object target) {
invokeMethodsForEvent(mEventToHandlers.get(event), source, event, target);
invokeMethodsForEvent(mEventToHandlers.get(Lifecycle.Event.ON_ANY), source, event,
target);
}
private static void invokeMethodsForEvent(List handlers,
LifecycleOwner source, Lifecycle.Event event, Object mWrapped) {
if (handlers != null) {
for (int i = handlers.size() - 1; i >= 0; i--) {
handlers.get(i).invokeCallback(source, event, mWrapped);
}
}
}
}
@SuppressWarnings("WeakerAccess")
static class MethodReference {
final int mCallType;
final Method mMethod;
MethodReference(int callType, Method method) {
mCallType = callType;
mMethod = method;
mMethod.setAccessible(true);
}
void invokeCallback(LifecycleOwner source, Lifecycle.Event event, Object target) {
//noinspection TryWithIdenticalCatches
try {
switch (mCallType) {
case CALL_TYPE_NO_ARG:
mMethod.invoke(target);
break;
case CALL_TYPE_PROVIDER:
mMethod.invoke(target, source);
break;
case CALL_TYPE_PROVIDER_WITH_EVENT:
mMethod.invoke(target, source, event);
break;
}
} catch (InvocationTargetException e) {
throw new RuntimeException("Failed to call observer method", e.getCause());
} catch (IllegalAccessException e) {
throw new RuntimeException(e);
}
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
MethodReference that = (MethodReference) o;
return mCallType == that.mCallType && mMethod.getName().equals(that.mMethod.getName());
}
@Override
public int hashCode() {
return 31 * mCallType + mMethod.getName().hashCode();
}
}
}
最终执行了invokeCallbacks
方法,追根溯源可以发现,在Lifecycling
的getCallback
方法中同时执行了getObserverConstructorType
方法,一步步往下跟,最后执行到ClassesInfoCache
的hasLifecycleMethods
方法中,随后调用createInfo(Class klass, @Nullable Method[] declaredMethods)
方法,在这个方法中,通过反射获取到我们通过OnLifecycleEvent
注解修饰的方法,并且按照Event的类型存储到CallbackInfo
中.
那么总结一下,我们在生命周期观察者(实现了LifecycleObserver接口的类)中用注解修饰的方法会通过反射被获取并保存,在生命周期发生改变的时候再找到对应的方法,通过反射来调用.
那么到此,整个Lifecycle监听生命周期的实现原理就分析完毕了.
如果本文能够帮助到你,麻烦您动动小手给我点一个喜欢,如有不足请指正.
下一篇文章为Lifecycle的进阶使用.