《FINITE FIELDS FOR COMPUTER SCIENTISTS AND ENGINEERS》课后习题答案—Chapter 4

《FINITE FIELDS FOR COMPUTER SCIENTISTS AND ENGINEERS》课后习题答案系列

Chapter 4:Building Fields from Euclidean Domains《欧几里得环建立域》

文章目录

  • 《FINITE FIELDS FOR COMPUTER SCIENTISTS AND ENGINEERS》课后习题答案系列
  • 前言
  • 第四章 课后习题及答案
    • 4.1 习题1
    • 4.2 习题2
    • 4.3 习题3
    • 4.4 习题4
    • 4.5 习题5
    • 4.6 习题6
    • 4.7 习题7
    • 4.8 习题8
    • 4.9 习题9
    • 4.10 习题10
    • 4.11 习题11


前言

在这里插入图片描述

本系列是对Robert J.McEliece写的《FINITE FIELDS FOR COMPUTER SCIENTISTS AND ENGINEERS》书中课后习题进行解答,该书是密码学有限域必读的书籍,想深入研究密码学的学者建议通读。以下是作者和其他同学做过之后整理的答案,仅供参考!

提示:以下是本篇文章正文内容,下面答案可供参考

第四章 课后习题及答案

4.1 习题1

:证等价关系,即证自反性、对称性和传递性。

  • 1)自反性:因为 m ∣ a − a m|a-a maa,所以 a ≡ a ( m o d   m ) a\equiv a(mod\ m) aa(mod m)
  • 2)对称性:若 a ≡ b ( m o d   m ) a\equiv b(mod\ m) ab(mod m),则 m ∣ a − b m|a-b mab,所以 m ∣ b − a , b ≡ a ( m o d   m ) m|b-a, b\equiv a(mod\ m) mba,ba(mod m)
  • 3)传递性:若 a ≡ b ( m o d   m ) , b ≡ c ( m o d   m ) a\equiv b(mod\ m), b\equiv c(mod\ m) ab(mod m),bc(mod m),则 m ∣ a − b ,   m ∣ b − c m|a-b,\ m|b-c mab, mbc,所以 m ∣ a − b − ( b − c ) m|a-b-(b-c) mab(bc),即 m ∣ a − c , a ≡ c ( m o d   m ) m|a-c, a\equiv c(mod\ m) mac,ac(mod m)
    m = 0 m=0 m=0时, a ≡ b ( m o d   m ) a\equiv b(mod\ m) ab(mod m)当且仅当 a = b a=b a=b时,每个等价类有且仅有一个元素。

4.2 习题2

:设 a 1 , a 2 ∈ a ˉ , b 1 , b 2 ∈ b ˉ a_1,a_2\in \bar a,b_1,b_2\in \bar b a1,a2aˉ,b1,b2bˉ,即 a 1 ≡ a 2 ( m o d   m ) , b 1 ≡ b 2 ( m o d   m ) a_1\equiv a_2(mod\ m), b_1\equiv b_2(mod\ m) a1a2(mod m),b1b2(mod m),又因为 a 1 b 1 − a 2 b 2 = a 1 b 1 − a 1 b 2 + a 1 b 2 − a 2 b 2 = a 1 ( b 1 − b 2 ) + b 2 ( a 1 − a 2 ) a_1b_1-a_2b_2=a_1b_1-a_1b_2+a_1b_2-a_2b_2=a_1(b_1-b_2)+b_2(a_1-a_2) a1b1a2b2=a1b1a1b2+a1b2a2b2=a1(b1b2)+b2(a1a2),所以 m ∣ a 1 b 1 − a 2 b 2 m|a_1b_1-a_2b_2 ma1b1a2b2,即 a 1 b 1 ≡ a 2 b 2 ( m o d   m ) a_1b_1\equiv a_2b_2(mod\ m) a1b1a2b2(mod m),所以 a 1 b 1 ‾ = a 2 b 2 ‾ \overline{a_1b_1}=\overline{a_2b_2} a1b1=a2b2

4.3 习题3

:若 0 ˉ = 1 ˉ \bar0=\bar 1 0ˉ=1ˉ,则 m ∣ 1 − 0 m|1-0 m10,即 m m m是单位。
∴ \therefore ∀ a , b ∈ D \forall a,b\in D a,bD,有 m ∣ a − b m|a-b mab
∴ \therefore D   m o d   m D\ mod\ m D mod m有且仅有一个等价类 a ˉ , a ˉ \bar a,\bar a aˉ,aˉ既是零元,也是单位元。
∴ \therefore D   m o d   m D\ mod\ m D mod m是环,但不是域。

4.4 习题4

:证明,若 a ≠ 0 , b ≠ = 0 a\neq 0,b\neq =0 a=0,b==0,且 a b = 0 ab=0 ab=0,则 a a a不存在逆元。假设 a a a有逆元 a − 1 a^{-1} a1,则 b = a − 1 ⋅ a ⋅ b = a − 1 ⋅ 0 = 0 b=a^{-1}·a·b=a^{-1}·0=0 b=a1ab=a10=0,矛盾。
∴ \therefore 非零元 a a a不存在逆元。
∴ \therefore 有零因子环不是域。

4.5 习题5

:因为 p = x 2 + 1 ∣ x 2 − ( − 1 ) p=x^2 +1|x^2-(-1) p=x2+1x2(1)
∴ \therefore x 2 ≡ − 1 ( m o d   p ) x^2\equiv -1(mod\ p) x21(mod p)
∴ \therefore x 2 ‾ = − 1 ‾ \overline{x^2}=\overline{-1} x2=1

4.6 习题6

  • 证法1:若 a = 0 a=0 a=0 b = 0 b=0 b=0,则在 g ( 0 ) = − ∞ g(0)=-\infty g(0)=的定义下显然成立。(无零因子环上的多项式环)若 a ≠ 0 , b ≠ 0 a\neq 0, b\neq 0 a=0,b=0,设 a = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 , a n ≠ 0 a=a_nx^n+a_{n-1}x^{n-1}+\cdots +a_1x+a_0,a_n\neq 0 a=anxn+an1xn1++a1x+a0,an=0 b = b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 , b m ≠ 0 b=b_mx^m+b_{m-1}x^{m-1}+\cdots +b_1x+b_0,b_m\neq 0 b=bmxm+bm1xm1++b1x+b0,bm=0 g ( a ) = n , g ( b ) = m g(a)=n,g(b)=m g(a)=n,g(b)=m
    ∴ a b = a n b m x m + n + c m + n − 1 x m + n − 1 + ⋯ + c 1 x + c 0 , a n b m ≠ 0 \therefore ab=a_nb_mx^{m+n}+c_{m+n-1}x^{m+n-1}+\cdots +c_1x+c_0,a_nb_m\neq 0 ab=anbmxm+n+cm+n1xm+n1++c1x+c0,anbm=0
    ∴ g ( a b ) = m + n = g ( a ) + g ( b ) \therefore g(ab)=m+n=g(a)+g(b) g(ab)=m+n=g(a)+g(b)
  • 证法2:由书中(4.8)可知 g ( a ) = d e g r e e ( a ) g(a)=degree(a) g(a)=degree(a),则 g ( a b ) = d e g ( a b ) = d e g ( a ) + d e g ( b ) = g ( a ) + g ( b ) g(ab)=deg(ab)=deg(a)+deg(b)=g(a)+g(b) g(ab)=deg(ab)=deg(a)+deg(b)=g(a)+g(b),得证。

4.7 习题7

:假设 a ( x ) = q 1 ( x ) b ( x ) + r 1 ( x ) = q 2 ( x ) b ( x ) + r 2 ( x ) , d e g ( r 1 ( x ) ) < d e g ( b ( x ) ) , d e g ( r 2 ( x ) ) < d e g ( b ( x ) ) a(x)=q_1(x)b(x)+r_1(x)=q_2(x)b(x)+r_2(x),deg(r_1(x))a(x)=q1(x)b(x)+r1(x)=q2(x)b(x)+r2(x),deg(r1(x))<deg(b(x)),deg(r2(x))<deg(b(x)),且 r 1 ( x ) ≠ r 2 ( x ) r_1(x)\neq r_2(x) r1(x)=r2(x)。则 [ a 1 ( x ) − a 2 ( x ) ] b ( x ) = r 2 ( x ) − r 1 ( x ) [a_1(x)-a_2(x)]b(x)=r_2(x)-r_1(x) [a1(x)a2(x)]b(x)=r2(x)r1(x)。若 q 1 ( x ) − q 2 ( x ) ≠ 0 q_1(x)-q_2(x)\neq 0 q1(x)q2(x)=0,则 d e g [ r 2 ( x ) − r 1 ( x ) ] = d e g ( b ( x ) ) + d e g [ q 1 ( x ) − q 2 ( x ) ] ≥ d e g ( b ( x ) ) deg[r_2(x)-r_1(x)]=deg(b(x))+deg[q_1(x)-q_2(x)]\geq deg(b(x)) deg[r2(x)r1(x)]=deg(b(x))+deg[q1(x)q2(x)]deg(b(x)),又因为 d e g [ r 2 ( x ) − r 1 ( x ) ] ≤ m a x d e g ( r 1 ( x ) , d e g ( r 2 ( x ) ) deg[r_2(x)-r_1(x)]\leq max{deg(r_1(x),deg(r_2(x))} deg[r2(x)r1(x)]maxdeg(r1(x),deg(r2(x)),矛盾。
∴ q 1 ( x ) = q 2 ( x ) , r 1 ( x ) = r 2 ( x ) = a ( x ) − q 1 ( x ) b ( x ) \therefore q_1(x)=q_2(x),r_1(x)=r_2(x)=a(x)-q_1(x)b(x) q1(x)=q2(x),r1(x)=r2(x)=a(x)q1(x)b(x)

4.8 习题8

a 2 = 1 , a 1 = 1 , a 0 = 0 , b 2 = b 1 = b 0 = 1 a_2=1,a_1=1,a_0=0,b_2=b_1=b_0=1 a2=1,a1=1,a0=0,b2=b1=b0=1,所以 c 2 = a 2 b 2 + a 2 b 0 + a 0 b 2 + a 1 b 1 = 1 , c 1 = a 2 b 2 + a 2 b 1 + a 1 b 2 + a 1 b 0 + a 0 b 1 = 0 , c 0 = a 2 b 1 + a 1 b 2 + a 0 b 0 = 0 c_2=a_2b_2+a_2b_0+a_0b_2+a_1b_1=1,c_1=a_2b_2+a_2b_1+a_1b_2+a_1b_0+a_0b_1=0,c_0=a_2b_1+a_1b_2+a_0b_0=0 c2=a2b2+a2b0+a0b2+a1b1=1,c1=a2b2+a2b1+a1b2+a1b0+a0b1=0,c0=a2b1+a1b2+a0b0=0
∴ 110 ] ⋅ [ 111 ] = [ 100 ] \therefore 110]·[111]=[100] 110][111]=[100]

4.9 习题9

  • (a): ( a 3 x 3 + a 2 x 2 + a 1 x + a 0 ) ⋅ ( b 3 x 3 + b 2 x 2 + b 1 x + b 0 ) = a 3 b 3 x 6 + ( a 3 b 2 + a 2 b 3 ) x 5 + ( a 3 b 1 + a 2 b 2 + a 1 b 3 ) x 4 + ( a 3 b 0 + a 2 b 1 + a 1 b 2 + a 0 b 3 ) x 3 + ( a 2 b 0 + a 1 b 1 + a 0 b 2 ) x 2 + ( a 0 b 0 + a 0 b 1 ) x + a 0 b 0 (a_3x^3+a_2x^2+a_1x+a_0)·(b_3x^3+b_2x^2+b_1x+b_0)=a_3b_3x^6+(a_3b_2+a_2b_3)x^5+(a_3b_1+a_2b_2+a_1b_3)x^4+(a_3b_0+a_2b_1+a_1b_2+a_0b_3)x^3+(a_2b_0+a_1b_1+a_0b_2)x^2+(a_0b_0+a_0b_1)x+a_0b_0 (a3x3+a2x2+a1x+a0)(b3x3+b2x2+b1x+b0)=a3b3x6+(a3b2+a2b3)x5+(a3b1+a2b2+a1b3)x4+(a3b0+a2b1+a1b2+a0b3)x3+(a2b0+a1b1+a0b2)x2+(a0b0+a0b1)x+a0b0
    因为 x 4 ≡ x + 1 ( m o d   x 4 + x + 1 ) x^4\equiv x+1(mod\ x^4+x+1) x4x+1(mod x4+x+1)
    ∴ a 3 b 3 x 6 ≡ a 3 b 3 x 3 + a 3 b 3 x 2 ( m o d   x 4 + x + 1 ) \therefore a_3b_3x^6\equiv a_3b_3x^3+a_3b_3x^2(mod\ x^4+x+1) a3b3x6a3b3x3+a3b3x2(mod x4+x+1) ( a 3 b 2 + a 2 b 3 ) x 5 ≡ ( a 3 b 2 + a 2 b 2 + a 1 b 3 ) x + a 3 b 1 + a 2 b 2 + a 1 b 3 ( m o d   x 4 + x + 1 ) (a_3b_2+a_2b_3)x^5\equiv (a_3b_2+a_2b_2+a_1b_3)x+a_3b_1+a_2b_2+a_1b_3(mod\ x^4+x+1) (a3b2+a2b3)x5(a3b2+a2b2+a1b3)x+a3b1+a2b2+a1b3(mod x4+x+1)
    ∴ c 3 = a 3 b 3 + a 3 b 0 + a 2 b 1 + a 1 b 2 + a 0 b 3 \therefore c_3=a_3b_3+a_3b_0+a_2b_1+a_1b_2+a_0b_3 c3=a3b3+a3b0+a2b1+a1b2+a0b3
    c 2 = a 3 b 3 + a 3 b 2 + a 2 b 3 + a 2 b 0 + a 1 b 1 + a 0 b 2 c_2=a_3b_3+a_3b_2+a_2b_3+a_2b_0+a_1b_1+a_0b_2 c2=a3b3+a3b2+a2b3+a2b0+a1b1+a0b2
    c 1 = a 3 b 2 + a 2 b 3 + a 3 b 1 + a 2 b 2 + a 1 b 3 + a 1 b 0 + a 0 b 1 c_1=a_3b_2+a_2b_3+a_3b_1+a_2b_2+a_1b_3+a_1b_0+a_0b_1 c1=a3b2+a2b3+a3b1+a2b2+a1b3+a1b0+a0b1
    c 0 = a 3 b 1 + a 2 b 2 + a 1 b 3 + a 0 b 0 c_0=a_3b_1+a_2b_2+a_1b_3+a_0b_0 c0=a3b1+a2b2+a1b3+a0b0
  • (b) :记 a = x + 1 ‾ a=\overline {x+1} a=x+1,则有 a 0 = 1 ,   a 1 = x + 1 ‾ ,   a 2 = x 2 + 1 ‾ ,   a 3 = x 3 + x 2 + x + 1 ‾ ,   a 4 = x ˉ ,   a 5 = x 2 + x ‾ ,   a 6 = x 3 + x ‾ ,   a 7 = x 3 + x 2 + 1 ‾ ,   a 8 = x 2 ‾ ,   a 9 = x 3 + x 2 ‾ ,   a 10 = x 2 + x + 1 ‾ ,   a 11 = x 3 + 1 ‾ ,   a 12 = x 3 ‾ ,   a 13 = x 3 + x + 1 ‾ ,   a 14 = x 3 + x 2 + x ‾ a^0=1, \ a^1=\overline {x+1}, \ a^2=\overline{x^2+1}, \ a^3=\overline{x^3+x^2+x+1}, \ a^4=\bar x,\ a^5=\overline{x^2+x}, \ a^6=\overline{x^3+x}, \ a^7=\overline{x^3+x^2+1},\ a^8=\overline{x^2},\ a^9=\overline{x^3+x^2},\ a^{10}=\overline{x^2+x+1},\ a^{11}=\overline{x^3+1},\ a^{12}=\overline{x^3},\ a^{13}=\overline{x^3+x+1},\ a^{14}=\overline{x^3+x^2+x} a0=1, a1=x+1, a2=x2+1, a3=x3+x2+x+1, a4=xˉ, a5=x2+x, a6=x3+x, a7=x3+x2+1, a8=x2, a9=x3+x2, a10=x2+x+1, a11=x3+1, a12=x3, a13=x3+x+1, a14=x3+x2+x
    β l o g a β k a k 0000 0000 0001 0 0 0001 0010 4 1 0011 0011 1 2 0101 0100 8 3 1111 0101 2 4 0010 0110 5 5 0110 0111 10 6 1010 1000 12 7 1101 1001 11 8 0100 1010 6 9 1100 1011 13 10 0111 1100 9 11 1001 1101 7 12 1000 1110 14 13 1011 1111 3 14 1110 \begin{array}{cccc} \beta & log_a\beta& k & a^k \\ \hline \\ 0000 & & & 0000 \\ 0001 & 0 & 0 & 0001 \\ 0010 & 4 & 1 & 0011 \\ 0011 & 1 & 2 & 0101 \\ 0100 & 8 & 3 & 1111 \\ 0101 & 2 & 4 & 0010 \\ 0110 & 5 & 5 & 0110 \\ 0111 & 10 & 6 & 1010 \\ 1000 & 12 & 7 & 1101 \\ 1001 & 11 & 8 & 0100 \\ 1010 & 6 & 9 & 1100 \\ 1011 & 13 & 10 & 0111 \\ 1100 & 9 & 11 & 1001 \\ 1101 & 7 & 12 & 1000 \\ 1110 & 14 & 13 & 1011 \\ 1111 & 3 & 14 & 1110 \\ \end{array} β0000000100100011010001010110011110001001101010111100110111101111logaβ04182510121161397143k01234567891011121314ak0000000100110101111100100110101011010100110001111001100010111110

4.10 习题10

∵ g ( 1 + i ) = 1 + 1 = 2 \because g(1+i)=1+1=2 g(1+i)=1+1=2
∴ \therefore ∀ a ˉ ∈ D   m o d   p \forall \bar a\in D\ mod\ p aˉD mod p,有 g ( a ) < g ( p ) = 2 g(a)g(a)<g(p)=2
∴ g ( a ) = 0 \therefore g(a)=0 g(a)=0 1 1 1
∴ a = 0 , ± 1 , ± i \therefore a=0,\pm 1,\pm i a=0,±1,±i
∵ 1 + i ∣ 1 − ( − 1 ) , 1 + i ∣ i − ( − i ) \because 1+i|1-(-1),1+i|i-(-i) 1+i1(1),1+ii(i)
∴ D   m o d   p = { 0 ˉ , 1 ˉ , i ˉ } \therefore D\ mod\ p=\{\bar 0,\bar 1,\bar i\} D mod p={ 0ˉ,1ˉ,iˉ} 0 0 0为零元, i i i为单位元, i ˉ + i ˉ = 0 ˉ , i ˉ ⋅ i ˉ = 1 ˉ \bar i+\bar i=\bar 0,\bar i·\bar i=\bar 1 iˉ+iˉ=0ˉ,iˉiˉ=1ˉ

4.11 习题11

:略 (太长了,码字很累)。

你可能感兴趣的:(Finite,Fields,密码学)