- 推荐与广告区别
ActionReaction
TheDifferencebetweenaRecommendationandanAdAquickthoughtregardingFacebook’snewSocialAdsplatform.Arecommendationissomethingyougetfromsomeonewhoknowssomethingaboutyou.Theyhaveseenanitemofinterestandthoug
- 【PDF】常见纸张字体大小设置指南 / Common Paper Size Font Guidelines
hmywillstronger
pdf
常见纸张字体大小设置指南/CommonPaperSizeFontGuidelines纸张尺寸基础数据/PaperSizeReferenceA4纸张(210×297mm)字体建议/A4PaperFontRecommendations正文阅读用途/BodyTextUsage表格和图表/TablesandChartsA3纸张(297×420mm)字体建议/A3PaperFontRecommendatio
- 【ROS2】tf2_ros:坐标变换、坐标系跟踪
郭老二
ROSROS2
【ROS】郭老二博文之:ROS目录1、简介在机器人导航中,tf2用于管理和转换机器人、传感器和环境之间的坐标系;在传感器数据融合中,它帮助同步和整合不同传感器的数据2、接口常用接口如下:1)tf2_ros::StaticTransformBroadcaster说明:用于广播静态坐标变换的类;方法:sendTransform(std::vector)用于发送一个静态的坐标变换的消息。参数:geome
- 深入解析ROS tf2变换中的父子坐标系
YRr YRr
ROSrostf2
深入解析ROStf2变换中的父子坐标系在机器人操作系统(RobotOperatingSystem,ROS)中,tf2库是用于管理和维护多个坐标系之间关系的核心组件。tf2不仅继承了tf库的优点,还在性能、功能和易用性方面进行了显著提升。本文将以专业、严谨、逻辑清晰的语言,详细解释tf2变换中的父子坐标系的概念、作用、使用方法,深入探讨tf树的串联方式及其工作原理,阐述坐标系间相互转换的实现过程与原
- 机器人系统ros2-开发实践05-ROS2 中 tf2的定义及示例说明
1.whatros2tf2?tf2的全称是transform2,在ROS(RobotOperatingSystem)中,它是专门用于处理和变换不同坐标系间位置和方向的库。这个名字来源于“transform”这个词,表示坐标变换,而“2”则代表了这是该库的第二版,即改进和优化过的版本。ROS2(RobotOperatingSystem2)中的**tf2是一个用于处理机器人各部件之间相对位置关系的库*
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- tf1.x迁移到tf2.x contrib的方法和思路
沉迷单车的追风少年
深度学习-计算机视觉经验问题汇总tensorflow
最近在复现一篇上古时代的屎山,我的服务器是cuda10.1,没有办法用低版本的TensorFlow,所以必须将tf1迁移重构到tf2,加上我之前也不咋写过python,还是很蛋疼的。最蛋疼的还是tf2.x中全面取消了contrib(眼熟不,OpenCV也是这么干的)目录tf_upgrade_v2工具自动转化什么是TensorFlowcontrib?这些contrib去了哪?常见的错误一个例子参考:
- 冷启动推荐:系统性综述
jony0917
人工智能
原论文链接:Cold-StartRecommendationtowardstheEraofLargeLanguageModels(LLMs):AComprehensiveSurveyandRoadmapCONTENTFEATURES数据不完整学习(Data-IncompleteLearning)稳健协同训练(RobustCo-Training)稳健泛化(Robustgeneralization):
- PHP PSR(PHP Standards Recommendations)介绍
come11234
phpandroid开发语言
PHPPSR(PHPStandardsRecommendations)是PHP社区制定的一系列标准化规范,旨在统一PHP代码的编写方式、接口设计和开发实践,以提高代码的可读性、可维护性和互操作性。以下是核心PSR标准的解读和具体使用方法:一、核心PSR标准概览标准主题核心内容PSR-1基础编码规范文件格式、类命名、方法命名、常量命名等基础规则PSR-12扩展编码风格替代PSR-2,详细规定代码缩进
- ROS2学习(15)------ROS2 TF2 机器人坐标系管理器
村北头的码农
ROS2机器人
操作系统:ubuntu22.04IDE:VisualStudioCode编程语言:C++11ROS版本:2在ROS2中,TF2(TransformLibrary,v2)是一个非常核心的工具库,用于管理多个坐标系之间的变换关系(translation+rotation)。它广泛应用于机器人导航、SLAM、机械臂控制等场景。什么是TF2?简单来说:TF2是ROS2中用于实时跟踪和转换多个坐标系之间位置
- vscode配置
wbxxxxxxx
项目搭建vuevscodeide编辑器
一般来说前端项目,.vscod文件夹下包含几个文件1.extensions.json扩展配置文件,设置推荐的插件,可以在拓展中筛选出这些推荐的插件{"recommendations":["插件标识符"]} //插件标识符可以在插件的信息中找到2.settings.jsonvscode编辑器和插件的配置注意:项目中的setting.json会覆盖vscode中的全局配置。3.还有一些代码片段也
- Youtube推荐系统论文-《Deep Neural Networks for YouTube Recommendations》-简单总结
inner-01
推荐算法系统架构深度学习
文章目录前言一、背景介绍二、整体架构三、召回层四、排序层前言今天要学习的是一篇关于推荐系统的经典的论文,它是由google在2016年发表的,应用场景是youtube上的视频推荐,然后这个应该是当时大厂把深度学习应用到推荐系统这个方向上的非常早期的工作,虽然现在来看它的模型非常简单,但是其中涉及到了非常多的工程细节,是值得我们去学习和借鉴的。一、背景介绍众所周知YouTube是一个全球最大的视频分
- 【论文阅读】Attentive Collaborative Filtering:
hongjianMa
#多模态-论文阅读论文阅读推荐系统推荐算法多模态自注意力机制深度学习
AttentiveCollaborativeFiltering:MultimediaRecommendationwithItem-andComponent-LevelAttentionAttentiveCollaborativeFiltering(ACF)、隐式反馈推荐、注意力机制、贝叶斯个性化排序标题翻译:注意力协同过滤:基于项目和组件级注意力的多媒体推荐原文地址:点这里摘要多媒体内容正主导着当
- AI大模型在搜索推荐系统中的应用前景
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
1.背景介绍1.1问题由来随着互联网技术的迅猛发展,搜索推荐系统(SearchandRecommendationSystem)已经成为各大平台、搜索引擎的核心竞争力之一。传统的搜索推荐系统基于统计学方法,通过用户行为数据进行推荐,这种方法虽然效果稳定,但灵活性不足,难以应对复杂多变的用户需求。人工智能,特别是深度学习技术的发展,为搜索推荐系统带来了新的突破。基于大模型的推荐技术能够直接从用户输入的
- 亚马逊云科技-15分钟分析构建者新内容GenAI
taibaili2023
AWS
亚马逊云科技-15分钟分析构建者新内容GenAI关键字:[yt,AmazonRedshift,DataQualityRecommendations,DataIngestionAutomation,SensitiveDataMasking,InteractiveSparkAnalytics,UnifiedDataDiscovery]本文字数:400,阅读完需:2分钟导读演讲者在”AmazonClou
- 综述:大语言 RDRec:如何利用大语言模型做推荐系统模型在信息抽取上的应用_rdrec 模型
AI大模型-搬运工
语言模型人工智能自然语言处理AI大模型产品经理大模型大语言模型
推荐系统RDRec:RationaleDistillationforLLM-basedRecommendation大型语言模型(LLM)通过文本提示实现用户与物品间的有效语义推理,其推荐模型备受瞩目。然而,多数方法未深入探究交互背后的逻辑,如用户偏好与物品属性,这限制了LLM在推荐领域的推理深度。本文创新性地提出了原理蒸馏推荐器(RDRec),一种精简模型,旨在汲取更大语言模型(LM)生成的深层原
- 基于协同过滤算法的旅游推荐系统设计与实现
usp1994
旅游协同过滤算法算法推荐系统
点我下载==>基于协同过滤算法的旅游推荐系统设计与实现https://download.csdn.net/download/No_Name_Cao_Ni_Mei/88496060基于协同过滤算法的旅游推荐系统设计与实现DesignandImplementationofaTravelRecommendationSystembasedonCollaborativeFilteringAlgorithm目
- 基于机器学习的股票预测及股票推荐系统的设计与实现
usp1994
机器学习人工智能
基于机器学习的股票预测及股票推荐系统的设计与实现DesignandImplementationofaMachineLearning-basedStockPredictionandStockRecommendationSystem完整下载链接:基于机器学习的股票预测及股票推荐系统的设计与实现文章目录基于机器学习的股票预测及股票推荐系统的设计与实现摘要第一章绪论1.1研究背景1.2研究目的与意义1.3
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- 【3GPP】AT command 简介
ShiinaKaze
3GPPAT命令2G3G4G
ScopeATcommand用于TerminalEquipment(TE)通过TerminalAdaptor(TA)控制MobileTermination(MT)的功能和网络服务。命令前缀+C是ITU-TRecommendationV.250中为DigitalCellular保留的。这种抽象结构的多种实现:1.TA、MT与TE作为三个独立实体;2.TA集成在MT设备内部,TE作为独立实体;3.TA
- 从0开始使用Docker搭建Spark集群
吃鱼的羊
SPARKHadoop
https://www.jianshu.com/p/ee210190224f?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation最近在学习大数据技术,朋友叫我直接学习Spark,英雄不问出处,菜鸟不问对错,于是我就开始了Spark学习。为什么要在Docker上搭建Spark集群
- 【文献阅读分享】PAP-REC:个性化自动提示生成框架✨
Sheakan
推荐系统论文阅读总结人工智能推荐系统
标题期刊年份PAP-REC:PersonalizedAutomaticPromptforRecommendationLanguageModelACMTransactionsonInformationSystems(TOIS)2024研究背景在信息爆炸的时代,我们每天都要面对海量的数据和选择,这时候推荐系统就像我们的智能小助手,帮助我们在茫茫信息海洋中找到真正需要的资源。但是,传统的推荐系统模型大多
- 一、TensorFlow的建模流程
李建军
TensorFlowtensorflow人工智能python
1.数据准备与预处理:加载数据:使用内置数据集或自定义数据。预处理:归一化、调整维度、数据增强。划分数据集:训练集、验证集、测试集。转换为Dataset对象:利用tf.data优化数据流水线。importtensorflowastffromtensorflow.kerasimportlayers#加载MNIST数据集(x_train,y_train),(x_test,y_test)=tf.kera
- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- 基于python的音乐推荐系统设计与实现
wu_fei_yu
python开发语言
点我完整下载:基于python的音乐推荐系统设计与实现.docx基于python的音乐推荐系统设计与实现DesignandImplementationofaMusicRecommendationSystembasedonPython目录目录2摘要3关键词3
- Sass报错: Using / for division is deprecated
Pinia_0819
vuesass前端css
运行项目时报以下错误::Using/fordivisionisdeprecatedandwillberemovedinDartSass2.0.0.Recommendation:math.div($px,$screenWidth)Moreinfoandautomatedmigrator:https://sass-lang.com/d/slash-div官方还很贴心做了一个一键迁移的工具,执行下面两行
- 【Python百日进阶-Web开发-Peewee】Day295 - 查询示例(四)聚合1
岳涛@心馨电脑
Dashpython前端dash
文章目录14.6聚合14.6.1计算设施数量Countthenumberoffacilities14.6.2计算昂贵设施的数量Countthenumberofexpensivefacilities14.6.3计算每个成员提出的建议数量。Countthenumberofrecommendationseachmembermakes.14.6.4列出每个设施预订的总空位Listthetotalslots
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- ITU-T V-Series Recommendations
技术无疆
Othercompressionstandardsprotocolsinterfacenetworkalgorithm
TheITU-TV-SeriesRecommendationsonDatacommunicationoverthetelephonenetworkspecifytheprotocolsthatgovernapprovedmodemcommunicationstandardsandinterfaces.[1]Note:thebisandtersuffixesareITU-Tstandarddesig
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置