Hadoop离线 day15 Hive基本操作

Hive基本操作

  • 一、Hive基本操作
    • 1、创建数据库与创建数据库表
      • 1.1 创建数据库操作
        • 1.1.1创建数据库
        • 1.1.2 创建数据库并指定hdfs存储位置
        • 1.1.3 修改数据库
        • 1.1.4 查看数据库详细信息
        • 1.1.5 删除数据库
      • 1.2 创建数据库表操作
        • 1.2.1 管理表
        • 1.2.2 外部表:
        • 1.2.3 分区表:
        • 1.2.4 分桶表
        • 1.2.5 修改表
        • 1.2.6 删除表
        • 1.2.7 hive表中加载数据
        • 1.2.8 hive表中的数据导出(了解)
        • 1.2.9 清空表数据
    • 2、hive查询语法
      • 2.1 SELECT
        • 全表查询
        • 选择特定列查询
        • 列别名
      • 2.2、常用函数
      • 2.3 LIMIT语句
      • 2.4 WHERE语句
      • 2.5 比较运算符(BETWEEN/IN/ IS NULL)
      • 2.6 LIKE和RLIKE
      • 2.7、分组
        • GROUP BY语句
        • HAVING语句
      • 2.8、JOIN语句
        • 2.8.1、等值JOIN
        • 2.8.2、表的别名
        • 2.8.3、内连接(INNER JOIN)
        • 2.8.4、左外连接(LEFT OUTER JOIN)
        • 2.8.5、右外连接(RIGHT OUTER JOIN)
        • 2.8.6、满外连接(FULL OUTER JOIN)
        • 2.8.7、多表连接
      • 2.9、 排序
        • 2.9.1 全局排序(Order By)
        • 2.9.2 按照别名排序
        • 2.9.3 多个列排序
        • 2.9.4 每个MapReduce内部排序(Sort By)局部排序
        • 2.9.5 分区排序(DISTRIBUTE BY)
        • 2.9.6 CLUSTER BY
  • 四、Hive Shell参数
    • 4.1、Hive命令行
    • 4.2、Hive参数配置方式
  • 五、Hive函数
    • 5.1、内置函数
    • 5.2 Hive自定义函数
    • 5.3、UDF开发实例
      • 简单UDF示例
  • 六、hive的数据压缩
    • 6.1、MR支持的压缩编码
    • 6.2、压缩配置参数
    • 6.3、开启Map输出阶段压缩
    • 6.4 开启Reduce输出阶段压缩
    • 七、hive的数据存储格式
      • 7.1 列式存储和行式存储
      • 7.2 TEXTFILE格式
      • 7.3 ORC格式
      • 7.4 PARQUET格式
      • 7.5 主流文件存储格式对比实验

一、Hive基本操作

1、创建数据库与创建数据库表

1.1 创建数据库操作

1.1.1创建数据库

create database if not exists myhive;
use  myhive;

说明:hive的表存放位置模式是由hive-site.xml当中的一个属性指定的

hive.metastore.warehouse.dir</name>
/user/hive/warehouse</value>

1.1.2 创建数据库并指定hdfs存储位置

create database myhive2 location '/myhive2';

1.1.3 修改数据库

可以使用alter database 命令来修改数据库的一些属性。但是数据库的元数据信息是不可更改的,包括数据库的名称以及数据库所在的位置

alter  database  myhive2  set  dbproperties('createtime'='20180611');

1.1.4 查看数据库详细信息

查看数据库基本信息

desc  database  myhive2;

查看数据库更多详细信息

desc database extended  myhive2;   

1.1.5 删除数据库

删除一个空数据库,如果数据库下面有数据表,那么就会报错

drop  database  myhive2;

强制删除数据库,包含数据库下面的表一起删除

drop  database  myhive  cascade;   不要执行了

1.2 创建数据库表操作

创建数据库表语法

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name
data_type [COMMENT col_comment], …)] [COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], …)]
[CLUSTERED BY (col_name, col_name, …) [SORTED BY (col_name
[ASC|DESC], …)] INTO num_buckets BUCKETS] [ROW FORMAT
row_format] [STORED AS file_format] [LOCATION hdfs_path]

说明:
1、 CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。

2、 EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

3、 LIKE 允许用户复制现有的表结构,但是不复制数据。

4、 ROW FORMAT DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char] [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, …)]

用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive通过 SerDe 确定表的具体的列的数据。

5、 STORED AS
SEQUENCEFILE|TEXTFILE|RCFILE
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。

6、CLUSTERED BY
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

1.2.1 管理表

hive建表初体验

use myhive;
create table stu(id int,name string);
insert into stu values (1,"zhangsan");
select * from stu;

Hive建表时候的字段类型
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

Hadoop离线 day15 Hive基本操作_第1张图片
创建表并指定字段之间的分隔符

create  table if not exists stu2(id int ,name string) row format delimited fields terminated by '\t' stored as textfile location '/user/stu2';

根据查询结果创建表

create table stu3 as select * from stu2;

根据已经存在的表结构创建表

create table stu4 like stu2;

查询表的类型

desc formatted  stu2;

1.2.2 外部表:

外部表说明:
外部表因为是指定其他的hdfs路径的数据加载到表当中来,所以hive表会认为自己不完全独占这份数据,所以删除hive表的时候,数据仍然存放在hdfs当中,不会删掉

管理表和外部表的使用场景:
每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

操作案例
分别创建老师与学生表外部表,并向表中加载数据
创建老师表:

create external table techer (t_id string,t_name string) row format delimited fields terminated by '\t';

创建学生表:

create external table student (s_id string,s_name string,s_birth string , s_sex string ) row format delimited fields terminated by '\t';

从本地文件系统向表中加载数据

load data local inpath '/export/servers/hivedatas/student.csv' into table student;

加载数据并覆盖已有数据

load data local inpath '/export/servers/hivedatas/student.csv' overwrite  into table student;

从hdfs文件系统向表中加载数据(需要提前将数据上传到hdfs文件系统,其实就是一个移动文件的操作)

cd /export/servers/hivedatas
hdfs dfs -mkdir -p /hivedatas
hdfs dfs -put techer.csv /hivedatas/
load data inpath '/hivedatas/techer.csv' into table techer;

如果删掉student表,hdfs的数据仍然存在,并且重新创建表之后,表中就直接存在数据了,因为我们的student表使用的是外部表,drop
table之后,表当中的数据依然保留在hdfs上面了

1.2.3 分区表:

在大数据中,最常用的一种思想就是分治,我们可以把大的文件切割划分成一个个的小的文件,这样每次操作一个小的文件就会很容易了,同样的道理,在hive当中也是支持这种思想的,就是我们可以把大的数据,按照每天,或者每小时进行切分成一个个的小的文件,这样去操作小的文件就会容易得多了

创建分区表语法

create table score(s_id string,c_id string, s_score int) partitioned by (month string) row format delimited fields terminated by '\t';

创建一个表带多个分区

create table score2 (s_id string,c_id string, s_score int) partitioned by (year string,month string,day string) row format delimited fields terminated by '\t';

加载数据到分区表中

load data local inpath '/export/servers/hivedatas/score.csv' into table score partition (month='201806');

加载数据到一个多分区的表中去

load data local inpath '/export/servers/hivedatas/score.csv' into table score2 partition(year='2018',month='06',day='01');

多分区联合查询使用union all来实现

select * from score where month = '201806' union all select * from score where month = '201806';

查看分区

show  partitions  score;

添加一个分区

alter table score add partition(month='201805');

同时添加多个分区

alter table score add partition(month='201804') partition(month = '201803');

注意:添加分区之后就可以在hdfs文件系统当中看到表下面多了一个文件夹

删除分区

alter table score drop partition(month = '201806');

外部分区表综合练习:
需求描述:现在有一个文件score.csv文件,存放在集群的这个目录下/scoredatas/month=201806,这个文件每天都会生成,存放到对应的日期文件夹下面去,文件别人也需要公用,不能移动。需求,创建hive对应的表,并将数据加载到表中,进行数据统计分析,且删除表之后,数据不能删除

需求实现:
数据准备:

hdfs dfs -mkdir -p /scoredatas/month=201806
hdfs dfs -put score.csv /scoredatas/month=201806/

创建外部分区表,并指定文件数据存放目录

create external table score4(s_id string, c_id string,s_score int) partitioned by (month string) row format delimited fields terminated by '\t' location '/scoredatas';

进行表的修复,说白了就是建立我们表与我们数据文件之间的一个关系映射

msck  repair   table  score4;

修复成功之后即可看到数据已经全部加载到表当中去了

第二种实现方式,上传数据之后手动添加分区即可
数据准备:

hdfs dfs -mkdir -p /scoredatas/month=201805
hdfs dfs -put score.csv /scoredatas/month=201805

修改表,进行手动添加方式

alter table score4 add partition(month='201805');

1.2.4 分桶表

将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去
开启hive的桶表功能

set hive.enforce.bucketing=true;

设置reduce的个数

set mapreduce.job.reduces=3;

创建通表

create table course (c_id string,c_name string,t_id string) clustered by(c_id) into 3 buckets row format delimited fields terminated by '\t';

桶表的数据加载,由于通标的数据加载通过hdfs dfs -put文件或者通过load data均不好使,只能通过insert overwrite

创建普通表,并通过insert overwrite的方式将普通表的数据通过查询的方式加载到桶表当中去

创建普通表:

create table course_common (c_id string,c_name string,t_id string) row format delimited fields terminated by '\t';

普通表中加载数据

load data local inpath '/export/servers/hivedatas/course.csv' into table course_common;

通过insert overwrite给桶表中加载数据

insert overwrite table course select * from course_common cluster by(c_id);

1.2.5 修改表

表重命名
基本语法:
alter table old_table_name rename to new_table_name;
把表score4修改成score5
alter table score4 rename to score5;

增加/修改列信息
(1)查询表结构
desc score5;
(2)添加列
alter table score5 add columns (mycol string, mysco string);
(3)查询表结构
desc score5;
(4)更新列
alter table score5 change column mysco mysconew int;
(5)查询表结构
desc score5;

1.2.6 删除表

drop table score5;

1.2.7 hive表中加载数据

直接向分区表中插入数据(强烈不推荐使用)
create table score3 like score;

insert into table score3 partition(month =‘201807’) values (‘001’,‘002’,‘100’);

通过查询插入数据
通过load方式加载数据
load data local inpath ‘/export/servers/hivedatas/score.csv’ overwrite into table score partition(month=‘201806’);

通过查询方式加载数据
create table score4 like score;
insert overwrite table score4 partition(month = ‘201806’) select s_id,c_id,s_score from score;

多插入模式
常用于实际生产环境当中,将一张表拆开成两部分或者多部分
给score表加载数据
load data local inpath ‘/export/servers/hivedatas/score.csv’ overwrite into table score partition(month=‘201806’);

创建第一部分表:
create table score_first( s_id string,c_id string) partitioned by (month string) row format delimited fields terminated by ‘\t’ ;

创建第二部分表:
create table score_second(c_id string,s_score int) partitioned by (month string) row format delimited fields terminated by ‘\t’;

分别给第一部分与第二部分表加载数据
from score insert overwrite table score_first partition(month=‘201806’) select s_id,c_id insert overwrite table score_second partition(month = ‘201806’) select c_id,s_score;

查询语句中创建表并加载数据(as select)
将查询的结果保存到一张表当中去
create table score5 as select * from score;

创建表时通过location指定加载数据路径
1) 创建表,并指定在hdfs上的位置

create external table score6 (s_id string,c_id string,s_score int) row format delimited fields terminated by ‘\t’ location ‘/myscore6’;

2)上传数据到hdfs上
hdfs dfs -mkdir -p /myscore6
hdfs dfs -put score.csv /myscore6;
3)查询数据
select * from score6;

export导出与import 导入 hive表数据(内部表操作)
create table techer2 like techer;
export table techer to ‘/export/techer’;
import table techer2 from ‘/export/techer’;

1.2.8 hive表中的数据导出(了解)

将hive表中的数据导出到其他任意目录,例如linux本地磁盘,例如hdfs,例如mysql等等
insert导出
1) 将查询的结果导出到本地
insert overwrite local directory ‘/export/servers/exporthive’ select * from score;

2) 将查询的结果格式化导出到本地
insert overwrite local directory ‘/export/servers/exporthive’ row format delimited fields terminated by ‘\t’ collection items terminated by ‘#’ select * from student;

3) 将查询的结果导出到HDFS上(没有local)

insert overwrite directory ‘/export/servers/exporthive’ row format delimited fields terminated by ‘\t’ collection items terminated by ‘#’ select * from score;

Hadoop命令导出到本地
dfs -get /export/servers/exporthive/000000_0 /export/servers/exporthive/local.txt;

hive shell 命令导出

基本语法:(hive -f/-e 执行语句或者脚本 > file)
bin/hive -e “select * from myhive.score;” > /export/servers/exporthive/score.txt

export导出到HDFS上

export table score to ‘/export/exporthive/score’;

sqoop导出
后续单独讲。

1.2.9 清空表数据

只能清空管理表,也就是内部表
truncate table score6;
清空这个表会报错

2、hive查询语法

2.1 SELECT

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
基本的Select操作
 语法结构

SELECT [ALL | DISTINCT] select_expr, select_expr, … FROM
table_reference [WHERE where_condition] [GROUP BY col_list [HAVING
condition]] [CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT
BY| ORDER BY col_list] ] [LIMIT number]

注:1、order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
2、sort by不是全局排序,其在数据进入reducer前完成排序。因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序。
3、distribute by(字段)根据指定的字段将数据分到不同的reducer,且分发算法是hash散列。
4、Cluster by(字段) 除了具有Distribute by的功能外,还会对该字段进行排序。

因此,如果分桶和sort字段是同一个时,此时,cluster by = distribute by + sort by

分桶表的作用:最大的作用是用来提高join操作的效率;
(思考这个问题:
select a.id,a.name,b.addr from a join b on a.id = b.id;
如果a表和b表已经是分桶表,而且分桶的字段是id字段
做这个join操作时,还需要全表做笛卡尔积吗?)

全表查询

select * from score;

选择特定列查询

select s_id ,c_id from score;

列别名

1)重命名一个列。
2)便于计算。
3)紧跟列名,也可以在列名和别名之间加入关键字‘AS’

select s_id as myid ,c_id from score;

2.2、常用函数

1)求总行数(count)
select count(1) from score;
2)求分数的最大值(max)
select max(s_score) from score;
3)求分数的最小值(min)
select min(s_score) from score;
4)求分数的总和(sum)
select sum(s_score) from score;
5)求分数的平均值(avg)
select avg(s_score) from score;

2.3 LIMIT语句

典型的查询会返回多行数据。LIMIT子句用于限制返回的行数。
select * from score limit 3;

2.4 WHERE语句

1)使用WHERE 子句,将不满足条件的行过滤掉。
2)WHERE 子句紧随 FROM 子句。
3)案例实操
查询出分数大于60的数据
select * from score where s_score > 60;

2.5 比较运算符(BETWEEN/IN/ IS NULL)

1)下面表中描述了谓词操作符,这些操作符同样可以用于JOIN…ON和HAVING语句中。

Hadoop离线 day15 Hive基本操作_第2张图片
2)案例实操
(1)查询分数等于80的所有的数据
select * from score where s_score = 80;
(2)查询分数在80到100的所有数据
select * from score where s_score between 80 and 100;
(3)查询成绩为空的所有数据
select * from score where s_score is null;
(4)查询成绩是80和90的数据
select * from score where s_score in(80,90);

2.6 LIKE和RLIKE

1)使用LIKE运算选择类似的值
2)选择条件可以包含字符或数字:
% 代表零个或多个字符(任意个字符)。
_ 代表一个字符。
3)RLIKE子句是Hive中这个功能的一个扩展,其可以通过Java的正则表达式这个更强大的语言来指定匹配条件。
4)案例实操
(1)查找以8开头的所有成绩
select * from score where s_score like ‘8%’;
(2)查找第二个数值为9的所有成绩数据
select * from score where s_score like ‘_9%’;
(3)查找成绩中含9的所有成绩数据
select * from score where s_score rlike ‘[9]’;

逻辑运算符(AND/OR/NOT)
在这里插入图片描述
案例实操
(1)查询成绩大于80,并且s_id是01的数据
select * from score where s_score >80 and s_id = ‘01’;
(2)查询成绩大于80,或者s_id 是01的数
select * from score where s_score > 80 or s_id = ‘01’;
(3)查询s_id 不是 01和02的学生
select * from score where s_id not in (‘01’,‘02’);

2.7、分组

GROUP BY语句

GROUP BY语句通常会和聚合函数一起使用,按照一个或者多个列队结果进行分组,然后对每个组执行聚合操作。
案例实操:
(1)计算每个学生的平均分数
select s_id ,avg(s_score) from score group by s_id;
(2)计算每个学生最高成绩
select s_id ,max(s_score) from score group by s_id;

HAVING语句

1)having与where不同点
(1)where针对表中的列发挥作用,查询数据;having针对查询结果中的列发挥作用,筛选数据。
(2)where后面不能写分组函数,而having后面可以使用分组函数。
(3)having只用于group by分组统计语句。

2)案例实操:
求每个学生的平均分数
select s_id ,avg(s_score) from score group by s_id;
求每个学生平均分数大于85的人
select s_id ,avg(s_score) avgscore from score group by s_id having avgscore > 85;

2.8、JOIN语句

2.8.1、等值JOIN

Hive支持通常的SQL JOIN语句,但是只支持等值连接,不支持非等值连接。
案例操作
(1) 查询分数对应的姓名
SELECT s.s_id,s.s_score,stu.s_name,stu.s_birth FROM score s LEFT JOIN student stu ON s.s_id = stu.s_id

2.8.2、表的别名

1)好处
(1)使用别名可以简化查询。
(2)使用表名前缀可以提高执行效率。
2)案例实操
合并老师与课程表
select * from techer t join course c on t.t_id = c.t_id;

2.8.3、内连接(INNER JOIN)

内连接:只有进行连接的两个表中都存在与连接条件相匹配的数据才会被保留下来。
select * from techer t inner join course c on t.t_id = c.t_id;

2.8.4、左外连接(LEFT OUTER JOIN)

左外连接:JOIN操作符左边表中符合WHERE子句的所有记录将会被返回。

查询老师对应的课程
select * from techer t left join course c on t.t_id = c.t_id;

2.8.5、右外连接(RIGHT OUTER JOIN)

右外连接:JOIN操作符右边表中符合WHERE子句的所有记录将会被返回。
select * from techer t right join course c on t.t_id = c.t_id;

2.8.6、满外连接(FULL OUTER JOIN)

满外连接:将会返回所有表中符合WHERE语句条件的所有记录。如果任一表的指定字段没有符合条件的值的话,那么就使用NULL值替代。

SELECT * FROM techer t FULL JOIN course c ON t.t_id = c.t_id ;

2.8.7、多表连接

注意:连接 n个表,至少需要n-1个连接条件。例如:连接三个表,至少需要两个连接条件。
多表连接查询,查询老师对应的课程,以及对应的分数,对应的学生
select * from techer t
left join course c
on t.t_id = c.t_id
left join score s
on s.c_id = c.c_id
left join student stu
on s.s_id = stu.s_id;
大多数情况下,Hive会对每对JOIN连接对象启动一个MapReduce任务。本例中会首先启动一个MapReduce job对表techer和表course进行连接操作,然后会再启动一个MapReduce job将第一个MapReduce job的输出和表score;进行连接操作。

2.9、 排序

2.9.1 全局排序(Order By)

Order By:全局排序,一个reduce
1)使用 ORDER BY 子句排序
ASC(ascend): 升序(默认)
DESC(descend): 降序
2)ORDER BY 子句在SELECT语句的结尾。
3)案例实操
(1)查询学生的成绩,并按照分数降序排列
SELECT * FROM student s LEFT JOIN score sco ON s.s_id = sco.s_id ORDER BY sco.s_score DESC;
(2)查询学生的成绩,并按照分数升序排列
SELECT * FROM student s LEFT JOIN score sco ON s.s_id = sco.s_id ORDER BY sco.s_score asc;

2.9.2 按照别名排序

按照学生分数的平均值排序
select s_id ,avg(s_score) avg from score group by s_id order by avg;

2.9.3 多个列排序

按照学生id和平均成绩进行排序
select s_id ,avg(s_score) avg from score group by s_id order by s_id,avg;

2.9.4 每个MapReduce内部排序(Sort By)局部排序

Sort By:每个MapReduce内部进行排序,对全局结果集来说不是排序。
1)设置reduce个数
set mapreduce.job.reduces=3;
2)查看设置reduce个数
set mapreduce.job.reduces;
3)查询成绩按照成绩降序排列
select * from score sort by s_score;
4) 将查询结果导入到文件中(按照成绩降序排列)
insert overwrite local directory ‘/export/servers/hivedatas/sort’ select * from score sort by s_score;

2.9.5 分区排序(DISTRIBUTE BY)

Distribute By:类似MR中partition,进行分区,结合sort by使用。
注意,Hive要求DISTRIBUTE BY语句要写在SORT BY语句之前。
对于distribute by进行测试,一定要分配多reduce进行处理,否则无法看到distribute by的效果。
案例实操:
(1) 先按照学生id进行分区,再按照学生成绩进行排序。

设置reduce的个数,将我们对应的s_id划分到对应的reduce当中去
set mapreduce.job.reduces=7;
通过distribute by 进行数据的分区
insert overwrite local directory ‘/export/servers/hivedatas/sort’ select * from score distribute by s_id sort by s_score;

2.9.6 CLUSTER BY

当distribute by和sort by字段相同时,可以使用cluster by方式。
cluster by除了具有distribute by的功能外还兼具sort by的功能。但是排序只能是倒序排序,不能指定排序规则为ASC或者DESC。
1) 以下两种写法等价
select * from score cluster by s_id;
select * from score distribute by s_id sort by s_id;

四、Hive Shell参数

4.1、Hive命令行

语法结构

hive [-hiveconf x=y]* [<-i filename>]* [<-f filename>|<-e query-string>] [-S]

说明:
1、 -i 从文件初始化HQL。
2、 -e从命令行执行指定的HQL
3、 -f 执行HQL脚本
4、 -v 输出执行的HQL语句到控制台
5、 -p connect to Hive Server on port number
6、 -hiveconf x=y Use this to set hive/hadoop configuration variables. 设置hive运行时候的参数配置

4.2、Hive参数配置方式

Hive参数大全:
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

开发Hive应用时,不可避免地需要设定Hive的参数。设定Hive的参数可以调优HQL代码的执行效率,或帮助定位问题。然而实践中经常遇到的一个问题是,为什么设定的参数没有起作用?这通常是错误的设定方式导致的。

对于一般参数,有以下三种设定方式:
 配置文件 hive-site.xml
 命令行参数 启动hive客户端的时候可以设置参数
 参数声明 进入客户单以后设置的一些参数 set

配置文件:Hive的配置文件包括
 用户自定义配置文件:KaTeX parse error: Unexpected character: '' at position 30: …hive-site.xml ̲ 默认配置文件:HIVE_CONF_DIR/hive-default.xml
用户自定义配置会覆盖默认配置。
另外,Hive也会读入Hadoop的配置,因为Hive是作为Hadoop的客户端启动的,Hive的配置会覆盖Hadoop的配置。
配置文件的设定对本机启动的所有Hive进程都有效。

命令行参数:启动Hive(客户端或Server方式)时,可以在命令行添加-hiveconf param=value来设定参数,例如:
bin/hive -hiveconf hive.root.logger=INFO,console
这一设定对本次启动的Session(对于Server方式启动,则是所有请求的Sessions)有效。

参数声明:可以在HQL中使用SET关键字设定参数,例如:
set mapred.reduce.tasks=100;
这一设定的作用域也是session级的。

上述三种设定方式的优先级依次递增。即参数声明覆盖命令行参数,命令行参数覆盖配置文件设定。注意某些系统级的参数,例如log4j相关的设定,必须用前两种方式设定,因为那些参数的读取在Session建立以前已经完成了。

参数声明 > 命令行参数 > 配置文件参数(hive)

五、Hive函数

5.1、内置函数

内容较多,见《Hive官方文档》
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

1)查看系统自带的函数
hive> show functions;
2)显示自带的函数的用法
hive> desc function upper;
3)详细显示自带的函数的用法
hive> desc function extended upper;

5.2 Hive自定义函数

1)Hive 自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展。
2)当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)。
3)根据用户自定义函数类别分为以下三种:
(1)UDF(User-Defined-Function)
一进一出
(2)UDAF(User-Defined Aggregation Function)
聚集函数,多进一出
类似于:count/max/min
(3)UDTF(User-Defined Table-Generating Functions)
一进多出
如lateral view explore()
4)官方文档地址
https://cwiki.apache.org/confluence/display/Hive/HivePlugins
5)编程步骤:
(1)继承org.apache.hadoop.hive.ql.UDF
(2)需要实现evaluate函数;evaluate函数支持重载;
6)注意事项
(1)UDF必须要有返回类型,可以返回null,但是返回类型不能为void;
(2)UDF中常用Text/LongWritable等类型,不推荐使用java类型;

5.3、UDF开发实例

简单UDF示例

第一步:创建maven java 工程,导入jar包


    
        cloudera</id>
 https://repository.cloudera.com/artifactory/cloudera-repos/</url>
    </repository>
</repositories>

    
        org.apache.hadoop</groupId>
        hadoop-common</artifactId>
        2.6.0-cdh5.14.0</version>
    </dependency>
    
        org.apache.hive</groupId>
        hive-exec</artifactId>
        1.1.0-cdh5.14.0</version>
    </dependency>
</dependencies>


    
        org.apache.maven.plugins</groupId>
        maven-compiler-plugin</artifactId>
        3.0</version>
        
            1.8</source>
            1.8</target>
            UTF-8</encoding>
        </configuration>
    </plugin>
     
         org.apache.maven.plugins</groupId>
         maven-shade-plugin</artifactId>
         2.2</version>
         
             
                 package</phase>
                 
                     shade</goal>
                 </goals>
                 
                     
                         <filter>
                             *:*</artifact>
                             
                                 META-INF/*.SF</exclude>
                                 META-INF/*.DSA</exclude>
                                 META-INF/*/RSA</exclude>
                             </excludes>
                         </filter>
                     </filters>
                 </configuration>
             </execution>
         </executions>
     </plugin>
</plugins>
</build>

第二步:开发java类继承UDF,并重载evaluate 方法

public class ItcastUDF extends UDF {
     
    public Text evaluate(final Text s) {
     
        if (null == s) {
     
            return null;
        }
        //返回大写字母
        return new Text(s.toString().toUpperCase());

    }
}

第三步:将我们的项目打包,并上传到hive的lib目录下

Hadoop离线 day15 Hive基本操作_第3张图片
第四步:添加我们的jar包
重命名我们的jar包名称

cd /export/servers/hive-1.1.0-cdh5.14.0/lib
mv original-day_06_hive_udf-1.0-SNAPSHOT.jar udf.jar

hive的客户端添加我们的jar包

add jar /export/servers/hive-1.1.0-cdh5.14.0/lib/udf.jar;

在这里插入图片描述

第五步:设置函数与我们的自定义函数关联
create temporary function tolowercase as ‘cn.itcast.udf.ItcastUDF’;
在这里插入图片描述

第六步:使用自定义函数

select tolowercase(‘abc’);
Hadoop离线 day15 Hive基本操作_第4张图片

六、hive的数据压缩

在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的MR处理的网络带宽

6.1、MR支持的压缩编码

Hadoop离线 day15 Hive基本操作_第5张图片
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示
Hadoop离线 day15 Hive基本操作_第6张图片
压缩性能的比较
Hadoop离线 day15 Hive基本操作_第7张图片
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

6.2、压缩配置参数

要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):

Hadoop离线 day15 Hive基本操作_第8张图片

6.3、开启Map输出阶段压缩

开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
案例实操:
1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
4)执行查询语句
select count(1) from score;

6.4 开启Reduce输出阶段压缩

当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
案例实操:
1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
insert overwrite local directory ‘/export/servers/snappy’ select * from score distribute by s_id sort by s_id desc;

七、hive的数据存储格式

Hive支持的存储数的格式主要有:TEXTFILE(行式存储) 、SEQUENCEFILE(行式存储)、ORC(列式存储)、PARQUET(列式存储)。

7.1 列式存储和行式存储

上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。
行存储的特点: 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。
列存储的特点: 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
ORC和PARQUET是基于列式存储的。

7.2 TEXTFILE格式

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。

7.3 ORC格式

Orc (Optimized Row Columnar)是hive 0.11版里引入的新的存储格式。
可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:

Hadoop离线 day15 Hive基本操作_第9张图片
一个orc文件可以分为若干个Stripe
一个stripe可以分为三个部分
indexData:某些列的索引数据
rowData :真正的数据存储
StripFooter:stripe的元数据信息
1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引只是记录某行的各字段在Row Data中的offset。
2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
3)Stripe Footer:存的是各个stripe的元数据信息
每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

7.4 PARQUET格式

Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。
Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示。

Hadoop离线 day15 Hive基本操作_第10张图片

上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

7.5 主流文件存储格式对比实验

从存储文件的压缩比和查询速度两个角度对比。
存储文件的压缩比测试:
0)测试数据 参见log.data

1)TextFile
(1)创建表,存储数据格式为TEXTFILE

create table log_text (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE ;

(2)向表中加载数据

load data local inpath '/export/servers/hivedatas/log.data' into table log_text ;

(3)查看表中数据大小

dfs -du -h /user/hive/warehouse/myhive.db/log_text;

18.1 M /user/hive/warehouse/log_text/log.data

2)ORC
(1)创建表,存储数据格式为ORC

create table log_orc(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc ;

(2)向表中加载数据

insert into table log_orc select * from log_text ;

(3)查看表中数据大小

dfs -du -h /user/hive/warehouse/myhive.db/log_orc;

2.8 M /user/hive/warehouse/log_orc/123456_0
3)Parquet
(1)创建表,存储数据格式为parquet

create table log_parquet(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS PARQUET ;	

(2)向表中加载数据

insert into table log_parquet select * from log_text ;

(3)查看表中数据大小

dfs -du -h /user/hive/warehouse/myhive.db/log_parquet;

13.1 M /user/hive/warehouse/log_parquet/123456_0
存储文件的压缩比总结:
ORC > Parquet > textFile
存储文件的查询速度测试:
1)TextFile

hive (default)> select count(*) from log_text;

_c0
100000
Time taken: 21.54 seconds, Fetched: 1 row(s)
2)ORC

hive (default)> select count(*) from log_orc;

_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)
3)Parquet

hive (default)> select count(*) from log_parquet; 

_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)

存储文件的查询速度总结:

ORC > TextFile > Parquet

八、存储和压缩结合
官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
ORC存储方式的压缩:
Hadoop离线 day15 Hive基本操作_第11张图片
1)创建一个非压缩的的ORC存储方式
(1)建表语句

create table log_orc_none(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc tblproperties ("orc.compress"="NONE");
(2)插入数据
insert into table log_orc_none select * from log_text ;
(3)查看插入后数据
dfs -du -h /user/hive/warehouse/myhive.db/log_orc_none;

7.7 M /user/hive/warehouse/log_orc_none/123456_0

2)创建一个SNAPPY压缩的ORC存储方式
(1)建表语句

create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc tblproperties ("orc.compress"="SNAPPY");
(2)插入数据
insert into table log_orc_snappy select * from log_text ;
(3)查看插入后数据
dfs -du -h /user/hive/warehouse/myhive.db/log_orc_snappy ;

3.8 M /user/hive/warehouse/log_orc_snappy/123456_0

3)上一节中默认创建的ORC存储方式,导入数据后的大小为
2.8 M /user/hive/warehouse/log_orc/123456_0
比Snappy压缩的还小。原因是orc存储文件默认采用ZLIB压缩。比snappy压缩的小。

4)存储方式和压缩总结:
在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy。

你可能感兴趣的:(hadoop离线,数据库,大数据,hadoop,hive,mapreduce)