- KMeans聚类实战2
浊酒南街
#kmeans聚类python
目录NBA球员聚类--未知k值的情况NBA球员聚类–未知k值的情况#导入第三方模块importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearnimportmetricsimportseabornassnsfromsklearnimportpreprocess
- KMeans聚类实战1
浊酒南街
#kmeans聚类算法
目录iris聚类--已知k值的情况iris聚类–已知k值的情况#导入第三方模块importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearnimportmetricsimportseabornassns#读取iris数据集iris=pd.read_csv(r'
- 回归与聚类算法————无监督学习-K-means算法
荷泽泽
机器学习python
目录1、无监督学习2、K-means原理3,API4、Kmeans性能评估指标4.1轮廓系数4.2轮廓系数API5,总结1、无监督学习没有目标值的,从无标签的数据开始学习的聚类K-means(K均值聚类)降维PCA2、K-means原理随机设置K个特征空间内的点作为初始的聚类中心对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别接着对着标记的聚类中心之后,重新计算出每
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
sirius12345123
scikit-learn均值算法
importmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansimportnumpyasnpclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[-1.9,1
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
〖是♂我〗
scikit-learn均值算法聚类
代码:#导入必要的库importmatplotlib.pyplotasplt#用于绘制图形fromsklearn.clusterimportKMeans#KMeans聚类算法importnumpyasnp#数值计算库#定义class1到class4的数据点,模拟四个不同的类(每个类7个二维点)class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5]
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 毕设分享 基于Kmeans的图像分割算法软件设计
bee_dc
毕业设计毕设大数据
文章目录0简介1Kmeans聚类算法基本原理2基于Kmeans图像分割算法流程4代码运行结果及评价5最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于Kmeans的图像分割算法软件设计项目运行效果:毕业设计基于kmean的图像分割项目分享:见文末!1Kmeans聚类算法基本原理K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 多维偏好分析及其在实际决策中的应用:基于PCA-KMeans的数据降维与模式识别方法
多维偏好分析(MultidimensionalPreferenceAnalysis,MPA)是一种在市场营销、心理学和公共政策等领域广泛应用的分析工具,用于研究多维度下的复杂偏好决策过程。在高维数据集中,当属性与偏好之间存在非线性关系或维度重叠时,偏好的理解和可视化呈现出显著的技术挑战。本文本将研究采用主成分分析(PrincipalComponentAnalysis,PCA)和K均值聚类算法对鸢尾
- [Python数据分析]最通俗入门Kmeans聚类分析,可视化展示代码。
William数据分析
pythonkmeans数据分析分类机器学习python
什么是k-means分析?【头条@William数据分析,看原版】想象一下,你有一堆五颜六色的糖果,你想把它们按照颜色分成几堆。k-means分析就是这么一个自动分类的过程。它会根据糖果的颜色特征,把它们分成若干个组,每个组里的糖果颜色都比较相似。更专业一点说,k-means分析是一种常用的聚类算法,它会将数据集中的数据点分成k个不同的簇。每个簇都有一个中心点,这个中心点就是簇中所有数据点的平均值
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- 聚类算法-Kmeans聚类
红米煮粥
机器学习kmeans聚类
一、K-means聚类介绍1.含义K-means聚类是一种非常流行的无监督学习算法,用于将数据点划分为预定义的K个簇(或组),其中每个簇由其质心(即簇中所有点的均值)定义。K-means算法的目标是使簇内的点尽可能紧密地聚集在一起,同时使不同簇之间的点尽可能远离。2.基本步骤:选择K值:首先,你需要决定将数据分成多少个簇,即K的值。K的选择通常是基于问题的上下文或通过一些启发式方法(如肘部法则)来
- 机器学习 | 距离计算
X1AO___X1A
机器学习基础无监督学习#聚类算法机器学习无监督学习聚类距离计算
文章目录距离计算1.闵可夫斯基距离(有序属性)1.1曼哈顿距离1.2欧氏距离2.VDM距离(无序属性)3.MinkovDM距离(混合属性)4.加权距离(重要性不同)参考资料相关文章:机器学习|目录机器学习|聚类评估指标无监督学习|KMeans与KMeans++原理无监督学习|KMeans之Skleaen实现:电影评分聚类距离计算对函数dist(⋅,⋅)dist(\cdot,\cdot)dist(⋅
- GWO优化kmeans
2301_78492934
机器学习算法人工智能matlabkmeans聚类
GWO(灰狼优化器)是一种群体智能优化算法,它模拟了灰狼的社会结构和狩猎行为。GWO算法通过模拟灰狼的等级制度、狩猎策略和搜索机制来寻找问题的最优解。而K-means是一种经典的聚类算法,用于将数据点划分为K个簇。将GWO优化算法应用于K-means聚类中,主要是为了解决K-means算法对初始簇中心敏感和容易陷入局部最优解的问题。以下是GWO优化K-means的原理和过程的详细介绍:1.GWO算
- R语言Apriori关联规则、kmeans聚类、决策树挖掘研究京东商城网络购物用户行为数据可视化|附代码数据
数据挖掘
全文链接:http://tecdat.cn/?p=30360最近我们被客户要求撰写关于网络购物用户行为的研究报告,包括一些图形和统计输出。随着网络的迅速发展,依托于网络的购物作为一种新型的消费方式,在全国乃至全球范围内飞速发展电子商务成为越来越多消费者购物的重要途径。我们被客户要求撰写关于网络购物行为的研究报告。项目计划使用数据挖掘的方法,以京东商城网购用户的网络购物数据为基础,对网络购物行为的三
- 基于聚类的点云背景分离算法python代码
love6a6
算法聚类python
点云背景分离是一个常用的计算机视觉任务,它旨在从点云数据中分离出感兴趣的物体。聚类是一种常用的方法,可以通过将相似的点聚集在一起来完成背景分离。下面是一个简单的基于K-Means聚类的点云背景分离的Python代码示例,使用的是scikit-learn库:importnumpyasnpfromsklearn.clusterimportKMeansfromsklearn.preprocessingi
- open3d k-means 聚类
云杂项
open3d持续更新kmeans聚类算法计算机视觉python机器学习
k-means聚类一、算法原理1、介绍2、算法步骤二、代码1、机器学习生成`kmeans`聚类2、点云学习生成聚类三、结果1、原点云2、机器学习生成`kmeans`聚类3、点云学习生成聚类四、相关链接一、算法原理1、介绍K-means聚类算法是一种无监督学习算法,主要用于数据聚类。该算法的主要目标是找到一个数据点的划分,使得每个数据点与其所在簇的质心(即该簇所有数据点的均值)之间的平方距离之和最小
- Kmeans、混合高斯模型、EM 算法
dreampai
混合高斯模型(MixturesofGaussians)和EM算法image.pngKmeans与EM算法E步是确定隐含类别变量CM步更新其他参数u(质心)来时J(平方误差)最小化隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估
- python opencv 利用kmeans提取图像主颜色
羊羊羊羊羊羊羊--
pythonopencv
#包importcv2ascvimportnumpyasnpimportmatplotlib.pyplotaspltimportPIL%matplotlibinlinefromcollectionsimportCounterdefcalculate_perc(k_cluster):width=300palette=np.zeros((50,width,3),np.uint8)n_pixels=le
- 机器学习原型聚类
黄粱梦醒
1.原型聚类原型聚类即“基于原型的聚类”(prototype-basedclustering),原型表示模板的意思,就是通过参考一个模板向量或模板分布的方式来完成聚类的过程,常见的K-Means便是基于簇中心来实现聚类,混合高斯聚类则是基于簇分布来实现聚类。1.2kmeans1.2.1基本原理K-means是一种常见的聚类算法,也叫k均值或k平均。通过迭代的方式,每次迭代都将数据集中的各个点划分到
- 基于用户评分Kmeans聚类的协同过滤推荐算法实现(附源代码)
linge511873822
基于用户的协同过滤推荐算法Kmeans聚类聚类协同过滤推荐Kmeans聚类协同过滤推荐用户Kmeans聚类推荐
基于用户评分Kmeans聚类的协同过滤推荐算法实现一:基于用户评分Kmeans聚类的协同过滤推荐算法实现步骤1、构建用户-电影评分矩阵:publicObjectreadFile(StringfileName){Listuser=newArrayList();double[][]weight=newdouble[user_num][keyword_num];Listobj=newArrayList(
- Kmeans聚类算法实现(输出聚类过程,分布图展示)
linge511873822
基于项目的协同过滤推荐算法基于用户的协同过滤推荐算法Kmeans聚类算法协同过滤聚类算法kmeans协同过滤聚类聚类算法协同过滤协同过滤数据聚类
Kmeans聚类算法实现(输出聚类过程,分布图展示)Kmeans聚类算法是聚类算法中最基础最常用的聚类算法,算法很简单,主要是将距离最近的点聚到一起,不断遍历点与簇中心的距离,并不断修正簇中心的位置与簇中的点集合,通过最近距离和遍历次数来控制输出最终的结果。初始的簇中心、遍历次数、最小距离会影响最终的结果。具体的聚类算法过程不详细讲解,网上资料很多,本文主要是java语言实现,1000个点(本文是
- [解决sklearn的KMeans运行报错]AttributeError: ‘NoneType‘ object has no attribute ‘split‘
哈仔康康
kmeans算法机器学习
将threadpoolctl从版本2.2.0升级到版本3.1.0pipinstall--upgradethreadpoolctl==3.1.0
- 159基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类
顶呱呱程序
matlab工程应用算法matlab聚类无监督学习基于密度的噪声应用空间聚类
基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类,聚类结果效果好,DBSCAN不要求我们指定集群的数量,避免了异常值,并且在任意形状和大小的集群中工作得非常好。它没有质心,聚类簇是通过将相邻的点连接在一起的过程形成的。优于kmeans。程序已调通,可直接运行。159基于密度的噪声应用空间聚类无监督学习(xiaohongshu.com)
- 机器学习各种算法汇总模板
怎么菜成这样
机器学习机器学习python算法随机森林支持向量机
机器学习算法模板包含了KNN,线性回归,逻辑回归,朴素贝叶斯,决策树,支持向量机,随机森林,kmeans,集成算法各种算法,特征工程,评估方式任你选择!!!#导包fromsklearn.neighborsimportKNeighborsClassifierfromsklearn.linear_modelimportLinearRegressionfromsklearn.naive_bayesimp
- R语言编程-Tidyverse 书籍 - 第三章 - 统计建模
Hello育种
1整洁模型结果-broom包tidyverse主张以‘‘整洁的”数据框作为输入,但是lm,nls,t.test,kmeans等模型的输出结果,却是‘‘不整洁的”列表。broom包实现将模型输出结果转化为整洁的tibble,且列名规范一致,方便后续取用;另外,与tidyr包中的nest()/unnest()函数以及purrr包中的map_*()系列函数连用,非常便于批量建模和批量整合模型结果。bro
- 【吴恩达机器学习】第八周—聚类降维Kmeans算法
Sunflow007
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache