基于Elasticsearch+Fluentd+Kibana的日志收集分析系统

一个完整的日志系统,需要包含以下几个主要特点:`

收集-能够采集多种来源的日志数据

传输-能够稳定的把日志数据传输到中央系统

存储-如何存储日志数据

分析-可以支持 UI 分析

警告-能够提供错误报告,监控机制

为了提供分布式的实时日志搜集和分析的监控系统,我们采用了业界通用的日志数据管理解决方案 - 它主要包括 Elasticsearch 、 Logstash 和 Kibana 三个系统。通常,业界把这套方案简称为ELK,取三个系统的首字母,但是我们实践之后将其进一步优化为EFK,F代表Filebeat,用以解决Logstash导致的问题。其实Logstash 包含多种替代方案(Filebeat、Fluentd、rsyslog、syslog-ng 以及 Logagent。而EFK中的F究竟指Filebeat还是Fluentd,也有不同的说法。

Fluentd是一个消息采集,转化,抓发工具,目的是提供中心化的日志服务。基于CRuby实现,并对性能表现关键的一些组件用C语言重新实现,整体性能不错。支持所有主流日志类型,插件支持较多,性能表现较好。

Logstash支持所有主流日志类型,插件支持最丰富,可以灵活DIY,但性能较差,JVM容易导致内存使用量高。

Elasticsearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能

Kibana 也是一个开源和免费的工具,Kibana可以为 td-agent和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。

Elasticsearch

一个节点(node)就是一个Elasticsearch实例,一个集群(cluster)由一个或多个节点组成,它们具有相同的cluster.name,它们协同工作,分享数据和负载。当加入新的节点或者删除一个节点时,集群就会感知到并平衡数据。

集群中一个节点会被选举为主节点(master),它将临时管理集群级别的一些变更,例如新建或删除索引、增加或移除节点等。主节点不参与文档级别的变更或搜索,这意味着在流量增长的时候,该主节点不会成为集群的瓶颈。

做为用户,我们能够与集群中的任何节点通信,包括主节点。每一个节点都知道文档存在于哪个节点上,它们可以转发请求到相应的节点上。我们访问的节点负责收集各节点返回的数据,最后一起返回给客户端。这一切都由Elasticsearch处理。

node-1

#yum -y install java //下载java

#java -version //检测版本号

openjdk version "1.8.0_171"

OpenJDK Runtime Environment (build 1.8.0_171-b10)

OpenJDK 64-Bit Server VM (build 25.171-b10, mixed mode)

#wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.3.1.rpm

# rpm -ivh elasticsearch-6.3.1.rpm //安装

# vim /etc/elasticsearch/elasticsearch.yml //修改配置文件

cluster.name: my-application

node.name: node-1

node.master: true

network.host: 172.21.0.9

http.port: 9200

/etc/init.d/elasticsearch start //启动

curl http://192.168.124.173:9200/_cat/ //尝试链接 如果链接失败,关闭防火墙,查看配置文件

#curl http://192.168.124.173:9200/_cat/health

# curlhttp://192.168.124.173:9200/_cat/nodes

node-2

# yum install java

# java -version

#wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.3.1.rpm

# rpm -ivh elasticsearch-6.3.1.rpm

# vim /etc/elasticsearch/elasticsearch.yml //更改配置

cluster.name: my-application

node.name: node-2

node.master: false

network.host: 192.168.124.251

http.port: 9200

discovery.zen.ping.unicast.hosts: ["host1", "192.168.124.173"]

# /etc/init.d/elasticsearch start //启动服务

# /etc/init.d/elasticsearch status //查看状态

# curlhttp://192.168.124.251:9200/_cat

node-1

Fluentd(tdagent)

wget http://packages.treasuredata.com.s3.amazonaws.com/3/redhat/7/x86_64/td-agent-3.2.0-0.el7.x86_64.rpm

rpm -ivh td-agent-3.2.0-0.el7.x86_64.rpm --force --nodeps

yum install -y libcurl-devel

opt/td-agent/embedded/bin/fluent-gem install fluent-plugin-elasticsearch

#cd /etc/td-agent/

#cat td-agent.conf

@type forward

port 24224

####################################

@type tail

path /var/log/httpd/access_log

pos_file /var/log/td-agent/httpd-access.log.pos

tag apache.access

@type apache2

####################################

@type stdout

####################################

@type copy

@type elasticsearch

host 10.0.0.9

port 9200

logstash_format true

logstash_prefix fluentd-${tag}

logstash_dateformat %Y%m%d

include_tag_key true

type_name access_log

tag_key @log_name

flush_interval 1s

@type stdout

# /etc/init.d/td-agent restart

# yum -y install http

# systemctl start httpd

# chmod 777 /var/log/httpd/

# curl 'http://192.168.124.173:9200/_cat/indices?v'

# systemctl stop firewalld

# wget https://artifacts.elastic.co/downloads/kibana/kibana-6.3.1-x86_64.rpm

# rpm -ivh kibana-6.3.1-x86_64.rpm

# vim /etc/kibana/kibana.yml

server.port: 5601

server.host: “192.168.124.173"

elasticsearch.url: "http://192.168.124.173:9200

kibana.index: ".kibana”

# /etc/init.d/kibana restart

#tail -f /var/log/kibana/kibana.stderr

访问kibana web界面

http://192.168.124.173:5601/

你可能感兴趣的:(基于Elasticsearch+Fluentd+Kibana的日志收集分析系统)