[动手学深度学习-PyTorch版]-5.3卷积神经网络-多输入通道和多输出通道

5.3 多输入通道和多输出通道

前面两节里我们用到的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组。我们将大小为3的这一维称为通道(channel)维。本节我们将介绍含多个输入通道或多个输出通道的卷积核。

5.3.1 多输入通道

[动手学深度学习-PyTorch版]-5.3卷积神经网络-多输入通道和多输出通道_第1张图片
image.png

[动手学深度学习-PyTorch版]-5.3卷积神经网络-多输入通道和多输出通道_第2张图片
图5.4 含2个输入通道的互相关计算

接下来我们实现含多个输入通道的互相关运算。我们只需要对每个通道做互相关运算,然后通过 add_n函数来进行累加。

import torch
from torch import nn
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

def corr2d_multi_in(X, K):
    # 沿着X和K的第0维(通道维)分别计算再相加
    res = d2l.corr2d(X[0, :, :], K[0, :, :])
    for i in range(1, X.shape[0]):
        res += d2l.corr2d(X[i, :, :], K[i, :, :])
    return res

我们可以构造图5.4中的输入数组X、核数组K来验证互相关运算的输出。

X = torch.tensor([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
              [[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
K = torch.tensor([[[0, 1], [2, 3]], [[1, 2], [3, 4]]])

corr2d_multi_in(X, K)

输出:

tensor([[ 56.,  72.],
        [104., 120.]])

5.3.2 多输出通道

image.png

下面我们实现一个互相关运算函数来计算多个通道的输出。

def corr2d_multi_in_out(X, K):
    # 对K的第0维遍历,每次同输入X做互相关计算。所有结果使用stack函数合并在一起
    return torch.stack([corr2d_multi_in(X, k) for k in K])

我们将核数组K同K+1(K中每个元素加一)和K+2连结在一起来构造一个输出通道数为3的卷积核。

K = torch.stack([K, K + 1, K + 2])
K.shape # torch.Size([3, 2, 2, 2])

下面我们对输入数组X与核数组K做互相关运算。此时的输出含有3个通道。其中第一个通道的结果与之前输入数组X与多输入通道、单输出通道核的计算结果一致。

corr2d_multi_in_out(X, K)

输出:

tensor([[[ 56.,  72.],
         [104., 120.]],

        [[ 76., 100.],
         [148., 172.]],

        [[ 96., 128.],
         [192., 224.]]])

5.3.3 1×1卷积层

[动手学深度学习-PyTorch版]-5.3卷积神经网络-多输入通道和多输出通道_第3张图片
image.png

[动手学深度学习-PyTorch版]-5.3卷积神经网络-多输入通道和多输出通道_第4张图片
图5.5 1x1卷积核的互相关计算。输入和输出具有相同的高和宽

下面我们使用全连接层中的矩阵乘法来实现1×1卷积。这里需要在矩阵乘法运算前后对数据形状做一些调整。

def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.view(c_i, h * w)
    K = K.view(c_o, c_i)
    Y = torch.mm(K, X)  # 全连接层的矩阵乘法
    return Y.view(c_o, h, w)

经验证,做1×1卷积时,以上函数与之前实现的互相关运算函数corr2d_multi_in_out等价。

X = torch.rand(3, 3, 3)
K = torch.rand(2, 3, 1, 1)

Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)

(Y1 - Y2).norm().item() < 1e-6

输出:

True

在之后的模型里我们将会看到1×1卷积层被当作保持高和宽维度形状不变的全连接层使用。于是,我们可以通过调整网络层之间的通道数来控制模型复杂度。

小结

  • 使用多通道可以拓展卷积层的模型参数。
  • 假设将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。
  • 1×1卷积层通常用来调整网络层之间的通道数,并控制模型复杂度。

注:除代码外本节与原书此节基本相同,原书传送门

你可能感兴趣的:([动手学深度学习-PyTorch版]-5.3卷积神经网络-多输入通道和多输出通道)