- Windows 图形显示驱动开发-WDDM 3.0功能- D3D12 增强型屏障(二)
程序员王马
windows图形显示驱动开发驱动开发windows
同步图形处理器旨在并行执行尽可能多的工作。任何依赖于先前GPU工作的GPU工作都必须在访问相关数据之前同步。增强型屏障接口使用显式SyncBefore和SyncAfter值作为逻辑位字段掩码。在执行屏障之前,屏障必须等待所有前面的命令SyncBefore范围完成。同样,屏障必须阻止所有后续的SyncAfter范围,直到屏障完成。D3D12DDI_BARRIER_SYNC指定GPU工作相对于屏障的同
- github 上拉取,修改,增加分支及提交
AI_央木
githubgit
1.github中ssh配置1.1gitconfig--globaluser.name“你的名字”gitconfig--globaluser.email“你的邮箱”1.2生成id_rsa.pubssh-keygen-trsa-C"姓名/邮箱"1.3ssh配置将生成的id_rsa.pub中的内容拷贝到key中2.拉取项目gitclonegit@xxxx3.本地创建新分支gitcheckout-bxx
- Flexmark-Java: 高性能Markdown解析器全面指南
乌想炳Todd
Flexmark-Java:高性能Markdown解析器全面指南flexmark-javaCommonMark/MarkdownJavaparserwithsourcelevelAST.CommonMark0.28,emulationof:pegdown,kramdown,markdown.pl,MultiMarkdown.WithHTMLtoMD,MDtoPDF,MDtoDOCXconversi
- 推荐文章:GPU 基于顶点着色器的高效动画系统 for Unity.Entities
劳治亮
推荐文章:GPU基于顶点着色器的高效动画系统forUnity.Entities去发现同类优质开源项目:https://gitcode.com/1、项目介绍该项目是一个专为Unity.Entities设计的轻量级但极快的GPU顶点着色器动画系统。灵感源自Nordeus和Unity的合作,经过优化和调整,以适应最新的实体系统。它特别适用于需要大量角色各自独特动画的情况,且动画状态处理极其简单。2、项目
- JAVA中运算符要注意的地方
优雅的落幕
Javajava开发语言
本文章主要突出其与C语言的区别1.增量运算符+=-=*=%=1.a+=1.0a+=1.0;a=(int)(a+1.0);这两个等价而不是单纯的等价于a=a+1.02.a=a++publicstaticvoidmain(String[]args){inta=10;a=a++;System.out.println(a);}在上述代码中,a的结果是什么呢?是不是a=11?但其实不是的a=10其实这样赋值
- 小米音频理解技术重大突破:7B模型借助DeepSeek-R1算法引领行业新篇章
耶耶Norsea
网络杂烩人工智能深度学习
摘要小米公司通过采用DeepSeek-R1算法的迁移技术,在音频理解领域实现了重大突破。其7B模型在MMAU音频评测基准中表现出色,成功登顶排行榜。MMAU评测基准包含10000条音频样本,涵盖语音、环境声和音乐等多种类型,难度极高。即便如此,该模型的表现已超越人类专家的82.2%识别准确率,展现出卓越的音频理解能力。关键词小米音频突破,DeepSeek-R1算法,7B模型进展,MMAU评测基准,
- unity shader卡通渲染(描边)+阴影+多光源处理
QO_GQ
shadershaderunity3d
说道卡通渲染,应该都会想到描边:我所学的描边有三种:一种是计算边缘深度检测描边一种是色差检测描边一种是利用顶点法线向外扩展返回单色pass,使用正面裁剪我用的第三种:pass{//剔除前面(朝向摄像机的面)保留内部渲染CullFrontCGPROGRAM#pragmafragmentfragfloat4_LineColor;float_Line;structa2v{float4pos:POSITI
- 生成式AI+安全:API防护的“进化革命”——从被动防御到智能对抗的技术跃迁
数信云 DCloud
人工智能安全ai
在生成式AI重塑数字世界的今天,API作为数据流动的“数字血管”,其安全性已成为企业生死存亡的关键。行业数据显示,2025年全球77%的企业将深度整合生成式AI技术,承载着75%互联网流量的API体系,正驱动着超2000亿美元的数字经济浪潮。然而,这场技术革命也催生了新型威胁:攻击者利用生成式AI自动化构造恶意请求,绕过传统规则引擎;大模型API的滥用导致算力耗尽与数据泄露;甚至AI生成的代码漏洞
- 24小时响应+零宕机!TRS收益互换系统售后如何成为券商“救命稻草”?
Ashlee_code
架构javapythonc++c语言
《【券商震惊】传统询价3小时→TRS黑科技10分钟!盈立证券交易量暴增150%背后秘密》开篇:询价耗时3小时?券商正在被低效“慢性杀死”电话询价、邮件比价、Excel汇总——传统场外交易中,一次询价流程动辄数小时,客户流失率高达40%!令克软件TRS收益互换平台,依托DeepSeek动态定价算法与多发行方实时比价引擎,将询价响应时间从3小时压缩至10分钟,助力盈立证券交易量飙升150%,彻底改写行
- MySQL---DDL(3.17)
秋凉 づᐇ
mysqloracle数据库
1、DDL-数据库操作查询:查询所有数据库:SHOWDATABASES;查询当前数据库:SELECTDATABASE();创建:CREATEDATABASE[IFNOTEXISTS]数据库名[DEFAULTCHARSET字符集][COLLATE排序规则];删除:DROPDATABASE[IFEXISTS]数据库名;使用:USE数据库名;2、DDL--表操作-查询查询当前数据库所有表:SHOWTAB
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 证券交易系统核心技术解析:LinkTrader 的毫秒级响应架构与风控实践
Ashlee_code
架构pythonjavac++
一、行业痛点:为什么传统交易系统正在被淘汰?2024年,证券行业guweng22346的技术竞争已从“功能完备”转向**“速度+智能”的极限博弈**。以下是传统系统的三大致命缺陷:数据延迟:非官方行情源导致套利窗口丢失(实测延迟普遍>0.1秒);风控低效:依赖人工监控,凌晨时段风险拦截率不足30%;扩展性差:单体架构下订单处理峰值低于10万/秒,极易崩溃。典型案例:某券商因系统延迟0.05秒,单日
- 音频 Alsa、Framework及Android
‘禹’你一起
后端
目录1Alsa、Framework及Android1.1ALSA架构简介图11.2ALSA架构简介图21.3ALSA架构简介图31.4ALSA架构简介图41.5ALSA架构简介图51.6ALSA架构简介图61.8音频代码1Alsa、Framework及Android目前,linux系统常用的音频驱动有两种形式:alsa和oss。Alsa:现在是linux下音频驱动的主要形式,与简单的oss兼容。o
- 【大模型实战篇】使用GPTQ量化QwQ-32B微调后的推理模型
源泉的小广场
大模型大模型量化推理模型量化量化qwq32bgptq量化大模型推理性能调优
1.量化背景之所以做量化,就是希望在现有的硬件条件下,提升性能。量化能将模型权重从高精度(如FP32)转换为低精度(如INT8/FP16),内存占用可减少50%~75%。低精度运算(如INT8)在GPU等硬件上计算效率更高,推理速度可提升2~4倍。我们的任务是,将QwQ-32B微调后的推理模型,也就是bf16的精度,通过量化,压缩到int4。关于QwQ-32B微调,可以参考《利用ms-swift微
- 从零开始学习鸿蒙系统
Ning.L
华为harmonyos
1.移动通讯技术的发展-1G时代:1980年摩托罗拉开发出了第一部手机,使用的就是1G的技术。只能进行语音通话。就是大哥大。-2G时代:1996年到1997年出现了第二代GSM、CDMA等数字制式手机,增加了接收数据的功能。2G不仅可以通话,还可以数据收发的功能,最开始的速度只有9K/S。如果我想收发一些图片或者音频技术是不可能的,因为速度太慢了。后来随着互联网多媒体的流行,多了图片,视频等,所以
- 嵌入式开发之STM32学习笔记day06
小程同学>o<
嵌入式学习之STM32stm32学习笔记
基于STM32F103C8T6的开发实践——从入门到精通011.引言STM32系列微控制器是STMicroelectronics推出的一款高性能、低功耗的32位微控制器,广泛应用于嵌入式系统中。STM32F103C8T6是其中非常受欢迎的一款,凭借其强大的性能、丰富的外设接口和低廉的价格,成为了开发者的首选之一。本文将通过实例,详细介绍如何基于STM32F103C8T6进行开发,并带领读者完成从简
- ## centos7搭建nfs高可用共享存储
weixin_45674361
高可用部署linux服务器centosnfs运维
centos7搭建nfs双机热备的高可用共享存储本文通过使用keepalived+nfs+rsync,解决了主从服务器双向同步和客户端挂载失效的问题,实现了nfs文件系统双机热备。名称IP地址客户端192.168.1.1服务端服务器1192.168.1.100服务端服务器2192.168.1.200实施步骤keepalived部署在192.168.1.100和192.168.1.200上执行安装依
- linux系统命令——权限
why—空空
linux服务器运维
一、有哪些权限读(r)——对应数字4写(w)——对应数字2执行(x)——对应数字1二、权限及数字的对应4对应r--2对应-w-1对应--x5对应r-x6对应rw-7对应rwx三、文件的基本属性如图:①中如果是"一"表示文件类型为文件;如果是"d"表示文件类型是文件夹;如果是"l"表示文件类型为链接②表示文件属主(即谁创建的文件)的权限③中表示文件属主所属组(即文件属主所在的组)中的用户的权限④表示
- Github开源库Xpopup代码阅读
月亮下的小草屋
github开源库代码阅读android
前言很久没写点东西了,在家闲着考了个驾照,花了一个半月,中国的驾考真的是没眼看,刚拿到驾照当天就被疫情封闭在家,直接封了一个多月,人都麻了,再来一次估计直接过年了,最近刚开始干点活。Xpopup是我非常喜欢的一个Github开源库,一直在用,我在Xpopup2.x版本的时候看过一遍它的代码,现在已经更新到3.x版本了,这两天也没啥事,又重新看了一遍,Xpopup的代码还是很容易阅读的,有兴趣的话可
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- 【GPT入门】第23课 langchain serve介绍
*星星之火*
大模型gptlangchain
【GPT入门】第23课langchainserve介绍1.langchain介绍2.思路3.代码1.langchain介绍langserve是一个用于简化LangChain应用部署的工具,它可以将使用LangChain构建的链(chains)、代理(agents)等组件快速转化为RESTfulAPI服务,下面从多个方面详细介绍它的作用:1.简化部署流程一键部署为API:LangChain可用于构建
- 【GPT入门】第24课 langfuse介绍
*星星之火*
大模型gpt
【GPT入门】第24课langfuse介绍1.langfuse概念与作用2.代码3.页面效果4.设计模式1.装饰器模式2.上下文管理模式1.langfuse概念与作用Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。其作用主要包括以下几个方面:提升开发效率:通过消除LLM应用构建与运维的复杂性,让开发者、运维团队及产品经理能更专注于核心开发与迭代优化,减少在监控与优化方面的
- 【GPT入门】第20课 langchain的function calling 初步体验
*星星之火*
大模型gptlangchainpython
【GPT入门】第20课langchain的functioncalling初步体验1.langchain的functioncalling非常简洁2.代码3.执行结果:1.langchain的functioncalling非常简洁在方法名说明方法用途和参数作用增加@tool标签langchain方法自动把@tool转为方法定义,后续方法调用都很简洁下面代码用支持单函数与多函数调用,自己体验一下quer
- 情感分析任务的概述
阿你不是
python开发语言
一、情感分析的概述1、什么是情感分析情感分析,也称为情感分类,是一种自然语言处理的任务,用于分析文本、语音或其他形式的数据中所包含的情感倾向。其目标是判断数据表达的情感是积极的(Positive)、消极的(Negative)还是中立的(Neutral),或者进一步细化为更复杂的情感类别(如愤怒、喜悦、悲伤等)。2、情感分析的主要应用场景1)商业领域:情感分析主要进行产品评价分析,从客户和买家的评价
- 泰克AFG1022这么强大的功能,你还没有了解么?
思迈18086111968
科技
多种波形生成:支持生成多种标准波形,如正弦波、方波、三角波、脉冲波、锯齿波、噪声波等,还能生成50种常用的任意波形,满足不同测试场景需求。高精度输出:具有14位垂直分辨率,可提供高分辨率的波形输出,确保信号的精确度;频率分辨率达1μHz,能满足对不同频率信号的精确输出要求。多模式运行:支持连续模式、扫描模式、突发模式和调制模式。连续模式可连续输出选定波形;扫描模式能在一定频率范围内进行扫描输出;突
- 73_Go基础_1_43 方法继承
芦苇King
05_Go_01golang开发语言后端
packagemainimport"fmt"//1.定义一个"父类"typePersonstruct{namestringageint}//2.定义一个"子类"typeStudentstruct{Person//结构体嵌套,模拟继承性schoolstring}//3.方法func(pPerson)eat(){fmt.Println("父类的方法,吃窝窝头。。")}func(sStudent)stu
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- 一个简单的日志类Logger
qinfen123456
单片机嵌入式硬件c++学习笔记开发语言
实现一个C++简单日志类,具备以下特性:日志文件命名采用文件名前缀加上日期的格式,方便管理与识别。对单个日志文件大小进行限制,当文件大小达到20MB时,自动开启新的日志文件。具备过期文件清理机制,自动删除保留时间超过365天的日志文件,节省存储空间。该日志类是线程安全的,能够在多线程环境下稳定运行,避免日志记录冲突。支持使用format格式进行日志记录,方便灵活输出不同格式的日志信息。自动创建子目
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号