pytorch学习笔记 --- 口罩识别的模型训练及应用2

pytorch学习笔记 --- 口罩识别的模型训练及应用2

本次实践中,将选一种图像分类的模型,通过重新训练,获得新的模型,数据集使用我们的原来的口罩检测的数据集,打算从头训练出一个识别是否佩戴口罩的模型.

考虑到模型的精度和速度,选择resnet18模型.

数据集分为: train和val 类别为: BG -> 背景 MASK -> 佩戴口罩 NOMASK -> 未佩戴口罩

pytorch学习笔记 --- 口罩识别的模型训练及应用2_第1张图片
mask.png
%matplotlib inline
# 引入必要的库
from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode
# 加载数据集
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/mask'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(image_datasets['train'][0])
print(class_names)
(tensor([[[ 0.1768,  0.1768,  0.1768,  ...,  0.3138,  0.3138,  0.3138],
         [ 0.1768,  0.1768,  0.1768,  ...,  0.3138,  0.3138,  0.3138],
         [ 0.1768,  0.1768,  0.1768,  ...,  0.3138,  0.3138,  0.3138],
         ...,
         [-0.7479, -0.7479, -0.7479,  ...,  0.7077,  0.7077,  0.7077],
         [-0.7479, -0.7479, -0.7479,  ...,  0.7077,  0.7077,  0.7077],
         [-0.7479, -0.7479, -0.7479,  ...,  0.7077,  0.7077,  0.7077]],

        [[ 0.2577,  0.2577,  0.2577,  ...,  0.3277,  0.3277,  0.3277],
         [ 0.2577,  0.2577,  0.2577,  ...,  0.3277,  0.3277,  0.3277],
         [ 0.2577,  0.2577,  0.2577,  ...,  0.3277,  0.3277,  0.3277],
         ...,
         [-0.6001, -0.6001, -0.6001,  ...,  0.9230,  0.9230,  0.9230],
         [-0.6001, -0.6001, -0.6001,  ...,  0.9230,  0.9230,  0.9230],
         [-0.6001, -0.6001, -0.6001,  ...,  0.9230,  0.9230,  0.9230]],

        [[ 0.2173,  0.2173,  0.2173,  ...,  0.2696,  0.2696,  0.2696],
         [ 0.2173,  0.2173,  0.2173,  ...,  0.2696,  0.2696,  0.2696],
         [ 0.2173,  0.2173,  0.2173,  ...,  0.2696,  0.2696,  0.2696],
         ...,
         [-0.4624, -0.4624, -0.4624,  ...,  1.1237,  1.1237,  1.1237],
         [-0.4624, -0.4624, -0.4624,  ...,  1.1237,  1.1237,  1.1237],
         [-0.4624, -0.4624, -0.4624,  ...,  1.1237,  1.1237,  1.1237]]]), 0)
['BG', 'MASK', 'NOMASK']
# 可视化数据集中的图片
def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])
pytorch学习笔记 --- 口罩识别的模型训练及应用2_第2张图片
![output_9_0.png](https://upload-images.jianshu.io/upload_images/3160023-a57ba4a525e8955e.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
# 训练数据的主函数

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model


def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
# 定义模型
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 3.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 3)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 开始训练
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)

Epoch 0/24
----------


/usr/local/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:742: UserWarning: Corrupt EXIF data.  Expecting to read 2 bytes but only got 0. 
  warnings.warn(str(msg))


train Loss: 0.4244 Acc: 0.8462
val Loss: 0.1306 Acc: 0.9525

Epoch 1/24
----------


/usr/local/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:742: UserWarning: Corrupt EXIF data.  Expecting to read 2 bytes but only got 0. 
  warnings.warn(str(msg))


train Loss: 0.2558 Acc: 0.9039
val Loss: 0.1194 Acc: 0.9591

Epoch 2/24
----------


/usr/local/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:742: UserWarning: Corrupt EXIF data.  Expecting to read 2 bytes but only got 0. 
  warnings.warn(str(msg))


train Loss: 0.2167 Acc: 0.9183
val Loss: 0.1010 Acc: 0.9668

Epoch 3/24
----------


/usr/local/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:742: UserWarning: Corrupt EXIF data.  Expecting to read 2 bytes but only got 0. 
  warnings.warn(str(msg))


train Loss: 0.1863 Acc: 0.9287
# 保存训练模型
PATH = './mask.pth'
torch.save(model_ft.state_dict(), PATH)

# 可视化检验训练集
visualize_model(model_ft)
pytorch学习笔记 --- 口罩识别的模型训练及应用2_第3张图片
output_9_0.png

你可能感兴趣的:(pytorch学习笔记 --- 口罩识别的模型训练及应用2)