- 15. MySql高级之常用SQL技巧☆
喵先生呢
#MySql高级mysql
文章目录MySql高级之常用SQL技巧☆1.SQL执行顺序2.正则表达式使用3.MySQL常用函数3.1数字函数3.2字符串函数3.3日期函数3.4聚合函数☆MySql高级之常用SQL技巧☆1.SQL执行顺序编写顺序selectdistinctfromjoinONwheregroupbyhavingorderbylimit执行顺序fromonjoinwheregroupbyhavingselect
- elementuiPlus日期范围选择el-date-picker动态禁用时间选择
瑶琴AI前端
vue.jsjavascript前端elementui
记录项目中的一个小需求:使用elementuiPlus日期选择组件时,需要动态禁用可选择的日期,禁止选中今天之后的日期,且选中的日期范围不饿能超过30天。饿了么组件的plus版本去掉了v2版本的配置项picker,改用@calendar-change事件来代替,使用disabled-date属性和@calendar-change事件就可以完成动态禁用日期的行为。代码如下:constcurDay=r
- linux es后台启动命令,小白学ES 02-Linux中部署Elasticsearch单机服务
热带汽水
linuxes后台启动命令
目录@此部署过程以Elasticsearch-5.6.10版本为例,后续的学习和演示也用此版本.1前提:安装JDK学习使用ES的前提是成功安装JDK——很基础的一项步骤,这里省略.此处学习演示所用的JDK版本为:[root@host-10-0-20-50~]#java-versionjavaversion"1.8.0_151"Java(TM)SERuntimeEnvironment(build1.
- springboot之https服务器(生成keystore证书库及转cer证书)
Biu→Biu丶
springboothttpsjavahttps
一.生成自签名证书打开cmd输入命令生成证书:keytool-genkeypair-aliastomcat_https-keypass123456-keyalgRSA-keysize1024-validity365-keystore./https-java.keystore-storepass123456属性说明:-alias别名-keypass指定生成密钥的密码-keyalg指定密钥使用的加密算
- python画二维矩阵图_基于python 二维数组及画图的实例详解
weixin_39785400
python画二维矩阵图
1、二维数组取值注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型#二维数组importnumpyasnplist1=[[1.73,1.68,1.71,1.89,1.78],[54.4,59.2,63.6,88.4,68.7]]list3=[1.73,1.68,1.71,1.89,1.78]list4=[54.4,59.2,63.6,88.4,68.7]list
- java web 项目中封装的下拉列表小组件:实现下拉列表使用者前后端0行代码 ...
weixin_34383618
java前端后端ViewUI
导读:主要从4个方面来阐述,1:背景;2:思路;3:代码实现;4:使用一:封装背景像easyui之类的纯前端组件,也有下拉列表组件,但是使用的时候,每个下拉列表,要配一个URL,以及设置URL反回来的值和select的text,和value的对应关系,这有2个问题:一使用者必须知道URL,二,如果页面有10个下拉表表,要请求后台10次,肯定影响性能,而我想要的是使用者只要申明用哪个数据字典就行了,
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- 【转】时间序列分析——基于R,王燕
weixin_30780221
r语言
《时间序列分析——基于R》王燕,读书笔记笔记:一、检验:1、平稳性检验:图检验方法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、
- 管理艺术:从策略到执行
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
管理艺术:从策略到执行关键词:管理艺术、策略、执行、领导力、创新、社会责任、企业文化摘要:本文深入探讨管理艺术,从策略到执行,解析管理艺术在企业的应用与实际操作。文章分为七个部分,涵盖管理艺术的基础、策略层面、执行层面、心理层面、创新层面、社会层面及综合评估与反思,旨在为读者提供全面的管理艺术指南。目录大纲第一部分:管理艺术的基础第1章:管理艺术的概述1.1管理艺术的概念与重要性1.2管理艺术的历
- Linux编程:嵌入式ARM平台Linux网络实时性能优化
橘色的喵
Linux性能优化功能优化arm开发linux网络实时性能优化内核优化
文章目录0.概要1.时钟周期与网络性能的权衡时钟周期(ClockPeriod)**优化策略:****副作用:**2.网络中断优化**问题:****优化策略:****副作用:**3.网络协议栈优化**优化策略:****副作用:**4.禁用内存页面交换(禁用Swap)为什么禁用Swap?**禁用Swap配置:****副作用:**5.配置`swappiness`为0**如何设置`swappiness`为
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 正则表达式匹配空值
wukurua
正则表达式正则表达式
.{0}可匹配空值例如:port=(.{0})可匹配port=,匹配结果为:这个方法适用于这个字段不一定有值,例如有时port=80,有时port=,这时候就可以这样写:port=(.{0}|\d+)把空值放在前面,先判断是否为空完再判断是否满足值,避免出现因为优先匹配值而忽略了空值的判断,例如:port=(.*|.{0})去匹配port=824413,结果为:与本意相违背。
- element-ui修改dialog样式全局、局部修改问题 el-dialog__title/el-dialog__header/el-dialog__body/el-dialog__footer
春云资源
elementuicsshtmlcss3
//没有scoped全局css全部文件生效但是其他地方用dialog样式也会生效//有scoped为局部css--scoped只在本文件生效在这里设置el-dialog__header不生效//因此通过el-dialog的class进行全局css中局部定义只在当前文件生效点击打开Dialogdialog内容取消确定exportdefault{data(){return{centerDialogVi
- linux下共享内存和消息队列实现多进程间数据收发
hsy12342611
linuxlinuxexecve
linux下进程通信的方式有很多,共享内存,消息队列,管道等。共享内存可以传输大量数据,但是多个进程同时读取共享内存就会出现脏读,可以借助消息队列实现多进程消息发送和接收。这种组合方式在实际开发中应用还是很多的,接下来就看一下。目录1.共享内存操作api(1)创建共享内存(2)挂载共享内存到当前进程(3)取消挂载(4)共享内存控制函数-可以删除2.消息队列操作api(1)创建消息附列(2)往消息队
- 深入探讨:CME期货CBOT高频合约历史行情数据分析方法
hightick
外盘期货高频历史行情数据集数据分析数据挖掘金融python数据库
深入探讨:CME期货CBOT高频合约历史行情数据分析方法为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/19zhe1CCpDM56amDKO2nMwQ?pwd=4wpq提取码:4wpq请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。交易量与价格关系分析交易量与价格之间的关系
- 【Vim Masterclass 笔记10】S06L23:Vim 核心操作训练之 —— 文本的搜索、查找与替换操作(第二部分)
安冬的码畜日常
VimMasterclassvim笔记vim查找与替换
文章目录S06L23Search,Find,andReplace-PartTwo1文本替换命令`:s/old/new/`2指定范围的文本替换3特例:路径的替换4文件行号的配置5要点总结(1)搜索当前行(SameLineSearching)(2)跨行搜索(Searching)(3)替换命令(SubstituteCommand)写在前面根据李笑来《自学是门手艺》的建议,梳理完知识要点后又对这章内容制作
- 【Vim Masterclass 笔记13】第 7 章:Vim 核心操作之——文本对象与宏操作 + S07L28:Vim 文本对象
安冬的码畜日常
VimMasterclassvim笔记vim文本对象文本对象
文章目录Section7:TextObjectsandMacrosS07L28TextObjects1文本对象的含义2操作文本对象的基本语法3操作光标所在的整个单词4删除光标所在的整个句子5操作光标所在的整个段落6删除光标所在的中括号内的文本7删除光标所在的小括号内的文本8操作尖括号内的文本9操作光标所在的标签文本10操作大括号内的文本11操作光标所在的各种括号内的文本12本节思维导图写在前面本篇
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 【论文精读】Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
EEPI
自动驾驶人工智能论文阅读深度学习目标检测
1背景团队:地平线时间:代码:简介:这篇论文是Sparse4D的续作,区别主要在于特征时序融合上,新版提高了运算效率。后续端到端SparseDrive的基本框架与这篇基本类似。2存在的问题2.1其他稀疏3D检测的问题PETR是query-based方法,但是为了实现特征融合,进行了全局注意力机制,导致高计算量。2.2Sparse4Dv1的问题Sparse4Dv1的时序特征融合hierarchyfu
- GBase 8a慢SQL优化案例-2 通过分析函数改写不等值关联排序取值
dudulang8088
sql数据库数据仓库
某气象现场一条查询语句,大数据场景下,单个机构查询耗时5分钟以上,需要分析,SQL语句如下:SELECTt.station_no,t.collect_time_stamp,t.r2020,t.topFROM(SELECTt1.station_no,t1.collect_time_stamp,t1.r2020,(SELECTCOUNT(*)+1FROM(SELECTstation_no,--站点编号
- 【PCIe XDMA开发】XDMA与MIG位宽一致性要求
RunningCamel
PCIeFPGAPCIeXDMA
在基于FPGA的PCIeXDMA与MIG(MemoryInterfaceGenerator)协同设计中,位宽一致性对传输效率有重要影响,但具体实现需结合系统架构和性能需求综合考虑。一、位宽一致性的必要性数据路径对齐要求XDMA的AXI接口位宽(如128/256/512位)需与MIG的物理接口位宽保持一致15。若两者不一致,需插入位宽转换模块(如AXIDataWidthConverter),这会引入
- ADS基础教程19 - 电磁仿真(EM)基本概念和实操
RunningCamel
ADS仿真ADS仿真
EM介绍一、引言二、基本概念1.EM介绍2.Momentum介绍3.FEM介绍4.Substrate介绍三、创建Layout并进行Momentum仿真1.创建Layout2.添加Microtrip(微带线)3.添加Substrate4.Momentum仿真四、总结一、引言本章节开始介绍EM的基本概念、内容以及实现具体步骤,并介绍如何在ADS中创建一个Layout,然后执行Momentum仿真过程。
- ABC392 G FFT求卷积模板
一条大祥脚
算法
首先卷积就是如下的定义他有啥用呢,如果ai,bja_i,b_jai,bj对ai∗bja_i*b_jai∗bj有贡献,我们可以把a,ba,ba,b转化成cntcntcnt数组,然后做卷积,那么result(ai∗bj)result(a_i*b_j)result(ai∗bj)就会记录答案。比如如果我们用卷积来做a+ba+ba+b问题的话,给你a,ba,ba,b数组,问a+b=ca+b=ca+b=c,对
- 【GD32】从0开始学GD32单片机(5)—— USART串口通信详解
马浩同学
GD32系列单片机嵌入式硬件网络
目录概述功能概述全双工异步通信模式参数说明串口发送串口接收例程串口通信概述USART串口将是我们接触的第一个通信协议,也是最常用的通信协议。在项目开发中,我们常常用串口来打印单片机的运行日志,在查找一些运行时异常时特别有用,如果能通过串口日志打印来找出运行时的异常,肯定就不需要再debug了,省去了很多时间。下面是GD32串口的结构框图,咋一看非常复杂,但其实日常我们只使用了其中一小部分。功能概述
- 外贸怎么找客户?用AI社媒引流王在Facebook精准获客!
AIsocial
AI社媒引流王facebook营销AI社媒引流王
在跨境电商和外贸行业,外贸怎么找客户是每个企业都关心的问题。传统的B2B平台、展会、邮件营销等方式虽有效,但竞争激烈、成本高昂,转化率也越来越低。那么,有没有更精准、高效、低成本的获客方式?答案是:社交媒体营销!Facebook作为全球最大的社交平台,聚集了大量企业决策者和终端买家,是外贸企业获客的关键渠道。而通过AI社媒引流,我们可以利用Facebook上的群组、关键词霸屏、发消息、公共主页等方
- 掌握LinkedIn营销技巧,让外贸客户主动找上门!
AIsocial
AI社媒引流王人工智能大数据
LinkedIn作为全球最大的职场社交平台,聚集了超过9亿名来自200多个国家的职业人士。对于外贸企业来说,LinkedIn不仅是展示公司形象的窗口,更是精准获取高价值客户的利器。今天,我们将分享一套LinkedIn营销的实操技巧,帮助你高效开发客户,让外贸生意更上一层楼!1.打造专业的个人和公司主页LinkedIn营销的第一步是树立专业形象。无论是个人账号还是公司主页,都需要具备吸引力和可信度。
- TikTok营销实操干货:如何让你的外贸生意快速出圈?
AIsocial
AI社媒引流王人工智能大数据
TikTok,作为全球下载量最高的短视频平台,已经成为外贸企业获取海外客户的强大工具。相比传统社交媒体,TikTok凭借其短视频传播的高效性和娱乐性,为外贸营销提供了新的增长机会。那么,外贸人应该如何玩转TikTok,让生意快速出圈?今天就分享一套TikTok营销实操干货技巧,助你打造爆款内容,精准获取客户!1.找准目标市场,明确定位TikTok覆盖全球200多个国家,每个地区的用户喜好和文化都不
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- Linux常见的性能优化策略
这多冒昧啊
linux服务器运维
目录1.CPU性能优化:调整进程优先级2.内存优化:禁用透明大页3.磁盘I/O优化:切换I/O调度器4.网络优化:TCP缓冲区调优5.文件句柄优化:高并发API服务器策略总结:1.CPU性能优化:调整进程优先级场景描述:某跨境电商平台在“黑色星期五”大促期间,订单处理系统(Java服务)出现响应延迟。运维团队通过pidstat-u1发现名为log_aggregator的Python日志收集进程(P
- linux内网部署deepseek大模型(ollama+anythingllm)
wukurua
大模型linux大模型人工智能docker
一、安装ollama来源:ollama/docs/linux.mdatmain·ollama/ollama·GitHub1.下载安装包ollama下载链接:https://ollama.com/download/ollama-linux-amd64.tgz,下载后放在用户目录下2.运行脚本#!/bin/sh#ThisscriptinstallsOllamaonLinux.#Itdetectsthe
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =