- 白话设计模式之(95):状态模式——优化代码状态管理的利器
一杯年华@编程空间
白话设计模式设计模式状态模式ui
白话设计模式之(95):状态模式——优化代码状态管理的利器大家好!在软件开发的学习过程中,我们都在不断探索如何让代码更加高效、灵活且易于维护。设计模式作为编程领域的重要工具,为我们解决各种复杂问题提供了有效的方案。今天,咱们深入探讨状态模式,它是一种优化代码状态管理的利器,能帮助我们处理对象在不同状态下的复杂行为。希望通过这篇博客,能和大家一起全面掌握状态模式,从基础概念到实际应用,深入理解其原理
- Maven 的核心包
旷野说
mavenjava
由于前端项目不是核心,阅读nexus-public源代码似乎绕远路了。nexus-oss社区版主要就是集成maven的上传包、认证、包解析、包存储这几个核心功能,前端实现重新可以使用新的现代前端工具来提高生产力。故重新疏理一下maven的核心机制,即要深入解析Maven的源代码,需要结合其核心设计思想、模块架构和实际运行机制。一、前置知识准备Maven基础熟悉pom.xml结构、生命周期(Life
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- 探索DeepSeek:前端开发者不可错过的新一代AI技术实践指南
formerlyai
人工智能前端
引言:为什么DeepSeek成为技术圈焦点?最近,国产AI模型DeepSeek凭借其低成本训练、高性能输出和开源策略,迅速成为开发者社区的热门话题。作为覆盖语言、代码、视觉的多模态技术矩阵,DeepSeek不仅实现了与ChatGPT相媲美的能力,还通过强化学习驱动的架构创新,解决了大模型落地中的成本与效率瓶颈。对于前端开发者而言,DeepSeek的API接入能力和私有化部署方案,为智能应用开发提供
- python之tkinter库的frame组件
谷晓光
python
frame作用就是为了布局,将一组组件作为一个整体放在一个frame中,也方便对这一组组件进行控制。frame组件作为其他组件的框架,将布局分为一个个单独的空间,配合其他布局函数以实现复杂的界面布局。语法:Frame(父对象,参数列表,……)Frame(master=none,**options)(class)参数:参数名称属性举例或备注background或bg组件背景颜色borderwidth
- java面试合集
云端源想
java面试开发语言
背景:随着软件行业竞争日益激烈,Java作为最广泛应用的编程语言之一,其开发者在求职过程中面临的面试挑战也日益增大。为了帮助Java程序员更好地准备面试,提升竞争力,我们计划长期更新一个全面、深入的《Java面试合集》专栏。本专栏旨在覆盖从Java基础到高级技术点,以及实战经验分享,为不同层次的Java开发者提供一站式面试资源。《Java面试合集》专栏的设计需要兼顾技术深度、实战场景与行业趋势,采
- 产品经理知识体系学习与实践指南
liuyuanfeng_7
产品运营
新产品开发管理:从流程到体系0.3产品经理:角色与知识体系产品经理对产品生命周期的各个阶段,产品的孕育、创意、概念、开发、上市负责,以及对产品线和产品组合负责;不仅对实体产品负责,还要对服务、解决方案负责,对客户体验负责,对产品的运营和迭代负责。1.产品责任人2.迷你CEO3.客户代言人2.产品经理与项目经理的区别项目经理主要负责产品生命周期的某个阶段,如开发、上市、需求调研,最常见的是产品开发阶
- 9种Python数据可视化方案,让财务数据焕发生命力
IT小本本
python信息可视化数据分析数据挖掘
想象一下:你即将向董事会展示季度财务报告,面对的是一群已经看过无数PPT的高管。你是选择用普通的柱状图和折线图,还是用能够直观展示收入、支出、利润动态关系的交互式仪表板?本文将通过一个完整的Python财务数据可视化案例,展示如何将枯燥的财务数据转变为直观、动态且富有洞察力的可视化作品。场景:财务分析的可视化挑战李总是一家快速成长的科技公司CFO,每月需要向董事会汇报公司的财务状况。尽管他精通Ex
- 从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略
一键难忘
剪枝深度学习算法知识蒸馏
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中文章目录从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略1.
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- 性能测试自动化:JMeter脚本设计与分布式压测实战指南
测试渣
自动化jmeter分布式测试工具
引言在数字化竞争日益激烈的今天,软件系统的性能表现直接影响用户体验和业务连续性。无论是电商大促的“秒杀”场景,还是金融系统的高频交易,性能测试自动化已成为保障系统稳定性的核心手段。ApacheJMeter作为开源性能测试工具中的标杆,凭借其灵活性和扩展性,成为企业构建自动化测试体系的首选工具。本文将从脚本设计与分布式压测两大核心维度,系统阐述JMeter在性能测试自动化中的实践方法,为企业提供可落
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- 104.HarmonyOS NEXT跑马灯组件教程:实际应用场景与最佳实践
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT跑马灯组件教程:实际应用场景与最佳实践效果演示1.跑马灯组件应用场景概述跑马灯组件是HarmonyOSNEXT中一个非常实用的UI组件,它可以在有限的空间内展示超出显示区域的文本内容。本文将详细介绍跑马灯组件的实际应用场景和最佳实践,帮
- 【 <二> 丹方改良:Spring 时代的 JavaWeb】之 Spring Boot 的自动配置:约定优于配置的设计美学
Foyo Designer
springspringbootjavaHikariCPLogback
点击此处查看合集https://blog.csdn.net/foyodesigner/category_12907601.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12907601&sharerefer=PC&sharesource=FoyoDesigner&sharefrom=from_link一、SpringBoot的自动配
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 模型保存与加载:PyTorch中的实践指南
冰蓝蓝
自然语言处理pytorch人工智能python
在深度学习项目中,模型的保存和加载是一个至关重要的步骤。它不仅有助于在训练过程中保存进度,还可以在训练完成后部署模型。PyTorch提供了灵活的方式来保存和加载模型,本文将详细介绍这些方法。模型保存在PyTorch中,有两种主要的模型保存方法:保存整个模型和仅保存模型参数。保存整个模型保存整个模型意味着保存模型的结构和参数。这种方法简单直接,但文件体积较大,且依赖于模型的具体实现。importto
- 深度学习中的注意力机制:解锁智能模型的新视角
冰蓝蓝
深度学习深度学习人工智能
在人工智能的快速发展中,深度学习模型已经成为了处理复杂数据和任务的主力军。然而,随着数据量的激增和任务的复杂化,传统的深度学习模型面临着效率和性能的双重挑战。在这样的背景下,注意力机制(AttentionMechanism)应运而生,它不仅提升了模型的处理能力,还为深度学习领域带来了新的研究视角。什么是注意力机制?注意力机制是一种受人类视觉注意力启发的技术,它允许模型在处理大量信息时,能够动态地聚
- 【漏洞复现】泛微OA E-Cology getdata.jsp SQL注入漏洞
0x0000001
漏洞复现javasql开发语言webweb渗透web安全漏洞
免责声明:本文内容旨在提供有关特定漏洞或安全漏洞的信息,以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步,并非出于任何恶意目的。阅读者应该明白,在利用本文提到的漏洞信息或进行相关测试时,可能会违反某些法律法规或服务协议。同时,未经授权地访问系统、网络或应用程序可能导致法律责任或其他严重后果。作者不对读者基于本文内容而产生的任何行为或后果承担责任。读者在使用本文所
- Node.js系列(1)--架构设计指南
一进制ᅟᅠ
Node.jsnode.jsvim编辑器
Node.js架构设计指南️引言Node.js作为一个高性能的JavaScript运行时环境,其架构设计对于构建可扩展的服务端应用至关重要。本文将深入探讨Node.js的架构设计原则、最佳实践和实现方案。架构概述Node.js架构主要包括以下方面:事件驱动:基于事件循环的异步非阻塞架构模块系统:CommonJS和ES模块系统进程模型:单线程主进程与工作线程流处理:基于Stream的数据处理错误处理
- MYSQL数据备份与恢复(mysqldump)
一诚学编程
mysqlmysql数据库linuxadb
MySQL备份之mysqldump表级别备份还原格式:mysqldump[OPTIONS]database[tables]实例:把db_user数据库中的tb_student数据表进行备份备份:#mysqldumpdb_usertb_student>/tmp/sqlbak/tb_student.sql-p还原:#mysql数据库名称/tmp/sqlbak/db_itheima.sql-p还原:#m
- python-git- GitHub
45度看我
github
python之git-GitHub一:github原文链接二:WhatisGitHub1>创建仓库2>创建分支3>提交修改4>发起PullRequest三:理解GitHub流四:创建你的GitHub主页1>setting-->“Commitchanges”按钮五:典型的项目1>社区(TheCommunity)2>文档(TheDocs)3>Issue创建一个问题单4>PullRequest六:Git
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- 生成式AI+安全:API防护的“进化革命”——从被动防御到智能对抗的技术跃迁
数信云 DCloud
人工智能安全ai
在生成式AI重塑数字世界的今天,API作为数据流动的“数字血管”,其安全性已成为企业生死存亡的关键。行业数据显示,2025年全球77%的企业将深度整合生成式AI技术,承载着75%互联网流量的API体系,正驱动着超2000亿美元的数字经济浪潮。然而,这场技术革命也催生了新型威胁:攻击者利用生成式AI自动化构造恶意请求,绕过传统规则引擎;大模型API的滥用导致算力耗尽与数据泄露;甚至AI生成的代码漏洞
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 证券交易系统核心技术解析:LinkTrader 的毫秒级响应架构与风控实践
Ashlee_code
架构pythonjavac++
一、行业痛点:为什么传统交易系统正在被淘汰?2024年,证券行业guweng22346的技术竞争已从“功能完备”转向**“速度+智能”的极限博弈**。以下是传统系统的三大致命缺陷:数据延迟:非官方行情源导致套利窗口丢失(实测延迟普遍>0.1秒);风控低效:依赖人工监控,凌晨时段风险拦截率不足30%;扩展性差:单体架构下订单处理峰值低于10万/秒,极易崩溃。典型案例:某券商因系统延迟0.05秒,单日
- 嵌入式开发之STM32学习笔记day06
小程同学>o<
嵌入式学习之STM32stm32学习笔记
基于STM32F103C8T6的开发实践——从入门到精通011.引言STM32系列微控制器是STMicroelectronics推出的一款高性能、低功耗的32位微控制器,广泛应用于嵌入式系统中。STM32F103C8T6是其中非常受欢迎的一款,凭借其强大的性能、丰富的外设接口和低廉的价格,成为了开发者的首选之一。本文将通过实例,详细介绍如何基于STM32F103C8T6进行开发,并带领读者完成从简
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- DIFFERENTIAL TRANSFORMER
UnknownBody
LLMDaily深度学习人工智能transformer
本文是LLM系列文章,针对《DIFFERENTIALTRANSFORMER》的翻译。差分Transformer摘要1引言2差分Transformer3实验4结论摘要Transformer倾向于将注意力过度分配到无关的上下文中。在这项工作中,我们引入了DIFFTransformer,它在消除噪声的同时增强了对相关上下文的关注。具体而言,差分注意力机制将注意力得分计算为两个单独的softmax注意力图
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include