- LINUX PCIe架构详解
吕喜曦
LINUXPCIe架构详解【下载地址】LINUXPCIe架构详解分享LINUXPCIe架构详解欢迎阅读《LINUXPCIe架构详解》文档项目地址:https://gitcode.com/Open-source-documentation-tutorial/cb0cf欢迎阅读《LINUXPCIe架构详解》文档。本指南深入浅出地介绍了在Linux操作系统环境下,针对PCIExpress(PCIe)设备
- 蓝桥大使【算法赛】----贪心算法
wyshh119
算法学习贪心算法
这里比较的难点在于sort排序的根据是什么,为什么是两人的报酬差,我的理解是当两人报酬差越大,那么总报酬的损失就越大,其实是缺少具体的证明的,但是通过就说明确实是这样。也就不深究证明了。#include#includeusingnamespacestd;longlongans=0;constintN=100005;structnode{//结构体inta;intb;};nodea[N];intma
- Fpga-流水灯代码详解
一顿吃一锅
fpga开发
moduleflowled(inputsys_clk50,inputrst_n,outputreg[3:0]led);reg[23:0]cnt;always@(posedgesys_clk50ornegedgerst_n)beginif(!rst_n)cnt<=24'd0;elseif(cnt<24'd10000000)cnt<=cnt+1'b1;elsecnt<=24'd0;endalways@
- FPGA实战1-流水灯实验verilog
马志高
FPGAfpga开发
1.实验要求(1)设计一个流水灯的实验,实现12位流水灯的依次点亮,(2)流水灯的流转时间是(500ms/2Hz),(3)系统时钟位50MHz,(4)定义12个寄存器ledtemp保存12个状态,(5)寄存器的初始值位12'b0000_0000_0001,(6)当移位到12‘b1000_0000_0000时,ledtemp的值回到12'b0000_0000_0001,2.设计代码//coding/
- 如何快速理解模糊PID---(二)
Invinciblenuonuo
STM32算法
模糊控制规则上文只介绍了误差这一个输入量,我们可以用相同的方法对误差的变化率这一输入量进行模糊化。模糊控制规则主要有两种,Mamdini和T-S型模糊控制器这里只介绍Mamdini型模糊控制器Mamdini型模糊控制器就是一堆“如果x是U1y是U2那么z是W1”的语句组成先上图设误差为E,误差的变化率为EC,而输出量我们也用上文的方法将他划分出六个区域,并规定出它的模糊论域(NB,NM,NS,Z0
- 基于PyCATIA的工程图视图锁定工具开发实战解析
Python×CATIA工业智造
CATIA二次开发python自动化
引言本文针对CATIA工程图设计中视图误操作问题,基于PySide6与PyCATIA库开发了一款轻量化视图锁定工具。通过Python二次开发实现全视图/选定视图快速锁定、非模态交互界面及状态实时反馈功能,有效提升大型装配体工程图操作效率。文章深度解析代码架构设计、关键技术实现及工程应用价值,提供完整的开发方法论。一、工具功能与工程应用场景1.1核心功能模块功能模块技术指标应用场景全视图锁定批量操作
- 深度剖析哈希表数据结构:原理、冲突解决与优化策略
麻辣酸甜
笔记
摘要哈希表作为一种高效的数据结构,在计算机科学领域广泛应用。本文深入探讨哈希表的工作原理,详细分析常见的冲突解决方法,如开放地址法、链地址法等,并进一步研究哈希表在不同场景下的优化策略,旨在帮助读者全面理解哈希表数据结构及其应用。一、引言在计算机程序中,快速查找和插入数据是常见需求。哈希表以其平均时间复杂度为O(1)的高效查找和插入特性,成为解决这类问题的有力工具。从数据库索引到编程语言的集合类实
- Java 大视界 -- Java 大数据在智能医疗远程会诊与专家协作中的技术支持(146)
青云交
大数据新视界Java大视界java大数据智能医疗远程会诊专家协作数据安全病例诊断
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 设计模式之装饰器模式
周努力.
设计模式设计模式装饰器模式
装饰器模式(Decorator)依然是我们设计模式中的结构型模式,其中的构造思想仍然是对多个类进行组合使用,以达成系统调用实现指定功能的设计模式。装饰器模式不论在我们日常开发过程中还是在我们提升技术阅读源码过程中都是比较常见的,但是整体学习这个模式的思路难度不大,接下来我将详细讲解此设计模式。目录1.概念2.代码实现3.应用场景4.装饰器模式与代理模式的区别1.概念我们前期所讲到的适配器模式,是连
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- 第十五届蓝桥杯省赛PythonB组B题【数字串个数】题解(AC)
信奥郭老师
蓝桥杯职场和发展
设n=10000n=10000n=10000。法一枚举333的个数以及777的个数,假设333的个数为iii,777的个数为jjj,那么非3,73,73,7的个数即为n−i−jn-i-jn−i−j。在长度为nnn的字符串中选取iii的方案数为CniC^i_nCni,在剩余n−in-in−i个位置选取jjj个的方案数为Cn−ijC^j_{n-i}Cn−ij,剩余位置个数为n−i−jn-i-jn−i−
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- “三分钟”带你看懂批次管理!(一)
wms系统
一、批次管理的定义与重要性1.批次管理的定义:批次管理是一种针对产品或物料的管理方法,它将同一生产周期或相同条件下生产、具有一致质量特征、生产信息和使用属性的产品组作为一个批次,进行分类、标识、追踪和管理。2.批次管理的重要性:提高可追溯性:精准追踪物料和产品的来源、去向及生命周期,在质量问题或召回需求出现时,能快速锁定问题批次,降低损失。增强质量控制:监控不同批次产品的质量指标,及时发现和分析质
- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- 前缀和处理数组区间之和问题
张同学吧
笔记c++
1.什么是区间和问题“区间和问题”通常指的是涉及计算或处理数组或数列某个子区间(即一段连续元素)的总和的类型问题。这类问题可能有多种变体和不同的复杂度,但基本思想都是在给定的区间内快速计算总和或处理与区间和相关的操作。2.例题1题目描述给定一个整数数组Array,请计算该数组在每个指定区间内元素的总和。输入描述第一行输入为整数数组Array的长度n,接下来n行,每行一个整数,表示数组的元素。随后的
- OpenAI Deep Research 要 200 美元/月?试试这 4 款免费开源平替!
surfirst
LLM人工智能开源DeepResearch
引言随着AI研究代理(AIresearchagents)的兴起,越来越多的工具能够帮助用户快速获取信息、整理研究报告。OpenAI最近推出的DeepResearch便是一个典型代表,它能在几十分钟内完成原本需要人类数小时的多步骤研究任务。然而,DeepResearch并非唯一的选择,开源社区也提供了多个优秀的替代方案。如果你希望使用开源方案、获得更强的可定制性,或者避免依赖OpenAI,那么本文介
- DeepSeek API在AutoCAD中的创新应用与挑战
CodeJourney.
数据库算法人工智能
在数字化设计领域,随着人工智能技术的飞速发展,将AI能力融入传统设计软件成为提升设计效率和质量的重要趋势。AutoCAD作为广泛应用的计算机辅助设计软件,与DeepSeekAPI的结合展现出了巨大的潜力。这种融合不仅为设计工作带来了全新的思路和方法,还在多个方面对设计流程进行了优化和创新。一、DeepSeekAPI赋能AutoCAD的多元应用场景(一)智能设计辅助:让创意快速落地在传统设计过程中,
- AI 赋能应急管理:ChatGPT、DeepSeek、Grok 的应用探索
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,大语言模型(LLM)在应急管理领域的应用逐步扩大。ChatGPT、DeepSeek、Grok等AI模型凭借强大的文本处理、数据分析和推理能力,可为灾害预警、应急响应、风险评估等提供高效支持。本文将对比三大AI模型在应急管理中的优势,并探讨其在未来智能化应急管理体系中的应用前景。2.应急管理中的核心挑战应
- 精准电源管理:LDO HX75XX系列的技术参数详解
华芯邦
电源管理芯片科技
在当今快速发展的电子时代,电子设备的性能与稳定性愈发受到重视。而电源管理作为电子设备的核心部分,其重要性不言而喻。华芯邦电源管理芯片其中的低压差线性稳压器LDOHX75XX系列便是在电源管理领域的代表。一、产品概述LDOHX75XX系列是一款高性能低压差线性稳压器,专为满足各种便携式电子设备、电池供电设备以及噪声敏感应用的需求而设计。该系列产品具有超低压差、高稳定性、低功耗等特点,能够在输入电压变
- 每天分析一个开源项目:open_deep_research
申非zz
LLMgithub开源
每天分析一个开源项目:open_deep_research项目链接:langchain-ai/open_deep_research项目介绍项目功能:OpenDeepResearch是一个基于LangGraph的Web研究助手,旨在帮助用户快速生成特定主题的综合性报告。它模拟了OpenAI和Gemini的DeepResearch流程,但提供了更强的自定义能力,允许用户配置模型、Prompt、报告结构
- 深度解析大模型推理框架:原理、应用与实践
百度_开发者中心
人工智能大模型自然语言处理
在当今数据驱动的时代,大模型推理框架已经成为人工智能领域的重要支柱。本文将通过简明扼要、清晰易懂的方式,带领读者深入了解大模型推理框架的原理、应用领域和实践经验,帮助读者更好地掌握这一技术,并在实际工作中发挥其价值。一、大模型推理框架简介大模型推理框架是指一种基于深度学习技术的推理框架,主要用于解决大规模数据集下的复杂问题。该框架通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分析
- 大模型推理框架:从理论到实践的全面解析
百度_开发者中心
人工智能大模型自然语言处理
在数据驱动的时代,深度学习技术已经渗透到各个行业,从图像识别到自然语言处理,从推荐系统到智能客服,其应用无处不在。然而,深度学习模型的训练和推理过程往往涉及大量数据和复杂计算,传统的计算框架难以满足需求。因此,大模型推理框架应运而生,成为解决这一问题的关键。一、大模型推理框架基本概念大模型推理框架是一种基于深度学习技术的推理框架,它通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分
- 将MySQL数据同步到Elasticsearch作为全文检索数据的实战指南
格子先生Lab
全文检索mysqlelasticsearch
在现代应用中,全文检索是一个非常重要的功能,尤其是在处理大量数据时。Elasticsearch是一个强大的分布式搜索引擎,能够快速地进行全文检索、分析和可视化。而MySQL作为传统的关系型数据库,虽然能够处理结构化数据,但在全文检索方面的性能不如Elasticsearch。因此,将MySQL中的数据同步到Elasticsearch中,可以充分发挥两者的优势。本文将介绍如何将MySQL中的数据同步到
- Flink相关面试题
努力的搬砖人.
面试java后端flink
以下是150道ApacheFlink面试题及其详细回答,涵盖了Flink的基础知识、核心架构、API使用、性能调优等多个方面,每道题目都尽量详细且简单易懂:Flink基础概念类1.什么是ApacheFlink?ApacheFlink是一个开源的流处理和批处理框架,能够实现快速、可靠、可扩展的大数据处理。它既可以处理无界的数据流,也可以处理有界的数据批,提供了低延迟和高吞吐量的实时数据处理能力。Fl
- Nginx 在 Ubuntu 上的安装与配置指南
一回生二回熟
Ubuntunginxubuntu运维
Nginx在Ubuntu上的安装与配置指南Ubuntu的软件管理工具已经提供了Nginx的安装包,如果不需要借助Docker等其他容器化工具对Nginx进行管理,可以直接通过Ubuntu自带的软件管理工具轻松安装Nginx。本指南将详细介绍Nginx的安装过程、安装后的检查方法、服务的管理以及基本的配置步骤,帮助你快速上手并正确使用Nginx。1.安装Nginx安装Nginx非常简单,只需使用以下
- Python从入门到精通的系统性学习路径
niuTaylor
编程区python学习开发语言
Python从入门到精通的系统性学习路径一、基础语法快速突破1.变量与基础操作#动态类型演示a=10#整型a=3.14#浮点型a="Python"#字符串a=[1,2,3]#列表#格式化输出进阶name="Alice"print(f"{name:*^20}")#居中填充输出:******Alice*******2.运算符优先级实战#常见运算符优先级练习result=5+3*2**2//(4%3)p
- 算法之魂:深入剖析数据结构中的七大排序算法
GeminiGlory
数据结构数据结构排序算法算法
目录1.冒泡排序(BubbleSort)2.选择排序(SelectionSort)3.插入排序(InsertionSort)4.希尔排序(ShellSort)5.快速排序(QuickSort)6.归并排序(MergeSort)7.堆排序(HeapSort)在计算机科学领域,排序是一项基础但至关重要的操作。无论你是处理数据库查询结果还是优化搜索效率,了解不同的排序算法及其适用场景都至关重要。本文将介
- 【HarmonyOS开发实战】鸿蒙DevEco Service开发准备与使用
「已注销」
harmonyos华为鸿蒙鸿蒙开发
前言DevEco低代码是一个基于Serverless和ArkUI的端云一体化低代码开发平台,可通过拖拽式开发,可视化配置构建元服务。打通HarmonyOS云侧与端侧能力,轻松实现HMSCore和AGCServerless能力的调用。通过与元服务生态、HMSCore、AGCServerless平台、DevEcoStudio、开发者联盟生态市场等产品的深度打通,助力元服务快速开发与降本增效。开发准备注
- 如何使用DeepSeek编写测试用例?
海姐软件测试
deepseek大数据测试工具
一、DeepSeek在测试用例设计中的定位DeepSeek作为AI工具,并非直接替代测试设计,而是通过以下方式提升效率:快速生成基础用例框架(等价类、边界值等)智能补充易遗漏场景(如特殊字符、异常流)自动化脚本片段生成(Python/pytest/JUnit等)测试数据构造建议(符合业务规则的Mock数据)二、四步法实战:AI协作编写测试用例Step1:明确需求输入输入质量决定输出质量,需向Dee
- LLM-Agent方法评估与效果分析
agent人工智能ai开发
1.引言近年来,随着大型语言模型(LLM)的快速发展,基于强化学习(RL)对LLM进行微调以使其具备代理(Agent)能力成为研究热点。从基础的单智能体强化学习算法(如PPO)到多智能体协作、语料重组以及在线自学习等新技术不断涌现,研究人员致力于探索如何提高LLM在实际应用中的决策能力、推理能力和任务执行效率。本文主要聚焦于当前LLM-Agent方法的检索与评估,旨在全面探讨各类方法的技术实现、实
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla