机器学习作业3-神经网络

机器学习作业3-神经网络

一、算法目标

通过神经网络,识别图片上的阿拉伯数字
作业材料中提供了原始图片素材,并标记了观察的值


机器学习作业3-神经网络_第1张图片

每一张小图,宽高20 * 20,用灰度值表示。

二、逻辑回归算法实现

1.加载数据

import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import matplotlib
import scipy.optimize as opt
from sklearn.metrics import classification_report#这个包是评价报告

def load_data(path, transpose=True):
    data = sio.loadmat(path)
    y = data.get('y')  # (5000,1)
    y = y.reshape(y.shape[0])  # make it back to column vector

    X = data.get('X')  # (5000,400)

    if transpose:
        # for this dataset, you need a transpose to get the orientation right
        X = np.array([im.reshape((20, 20)).T for im in X])

        # and I flat the image again to preserve the vector presentation
        X = np.array([im.reshape(400) for im in X])

    return X, y


X, y = load_data('ex3data1.mat')

print(X.shape)
print(y.shape)
(5000, 400)
(5000,)

定义用到的绘图函数

def plot_an_image(image):
#     """
#     image : (400,)
#     """
    fig, ax = plt.subplots(figsize=(1, 1))
    ax.matshow(image.reshape((20, 20)), cmap=matplotlib.cm.binary)
    plt.xticks(np.array([]))  # just get rid of ticks
    plt.yticks(np.array([]))
#绘图函数

简单的观察下效果

pick_one = np.random.randint(0, 5000)
plot_an_image(X[pick_one, :])
plt.show()
print('this should be {}'.format(y[pick_one]))

'y'数据集里存放了图片对应的实际值


机器学习作业3-神经网络_第2张图片

从5000条数据里随机选100条数据显示,观察效果

def plot_100_image(X):
    """ sample 100 image and show them
    assume the image is square

    X : (5000, 400)
    """
    size = int(np.sqrt(X.shape[1]))

    # sample 100 image, reshape, reorg it
    sample_idx = np.random.choice(np.arange(X.shape[0]), 100)  # 100*400
    sample_images = X[sample_idx, :]

    fig, ax_array = plt.subplots(nrows=10, ncols=10, sharey=True, sharex=True, figsize=(8, 8))

    for r in range(10):
        for c in range(10):
            ax_array[r, c].matshow(sample_images[10 * r + c].reshape((size, size)),
                                   cmap=matplotlib.cm.binary)
            plt.xticks(np.array([]))
            plt.yticks(np.array([]))  
            #绘图函数,画100张图片

plot_100_image(X)
plt.show()
机器学习作业3-神经网络_第3张图片

2. 先用逻辑回归处理数据

下面这段话非常重要,是数字识别的核心逻辑

raw_y表示结果集,存储了5000条数据的结果,单一维度的机器学习算法并不能识别出多种可能。这里分两步走

  • 把0~9的结果集转成bool型,转化成逻辑回归问题,astype方法转成0/1值
  • 用10个向量分别存储单一数值的结果集,每一个向量用来训练单一数值的模型
机器学习作业3-神经网络_第4张图片
y值向量化
raw_X, raw_y = load_data('ex3data1.mat')
print(raw_X.shape)
print(raw_y.shape)
(5000, 400)
(5000,)

# add intercept=1 for x0 (增加截距,即theta0的值)
X = np.insert(raw_X, 0, values=np.ones(raw_X.shape[0]), axis=1)#插入了第一列(全部为1)
X.shape

1556
(5000, 401)

# matlab的角标从1,开始用10代表0
# y have 10 categories here. 1..10, they represent digit 0 as category 10 because matlab index start at 1
# I'll ditit 0, index 0 again
y_matrix = []

# 重点,这里把[5000]的数据编成10 * 5000的矩阵,用来一次性训练0~9的所有参数集。要体会使用矩阵运算的魅力。
for k in range(1, 11):
    y_matrix.append((raw_y == k).astype(int))    # 见配图 "向量化标签.png"

# last one is k==10, it's digit 0, bring it to the first position,最后一列k=10,都是0,把最后一列放到第一列
y_matrix = [y_matrix[-1]] + y_matrix[:-1]
y = np.array(y_matrix)

y.shape

# 扩展 5000*1 到 5000*10
#     比如 y=10 -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]: ndarray
#     """

(10, 5000)

2. 训练一维模型

实现基础函数:损失函数、梯度下降等

def cost(theta, X, y):
    ''' cost fn is -l(theta) for you to minimize'''
    return np.mean(-y * np.log(sigmoid(X @ theta)) - (1 - y) * np.log(1 - sigmoid(X @ theta)))

def regularized_cost(theta, X, y, l=1):
    '''you don't penalize theta_0'''
    theta_j1_to_n = theta[1:]
    regularized_term = (l / (2 * len(X))) * np.power(theta_j1_to_n, 2).sum()

    return cost(theta, X, y) + regularized_term

def regularized_gradient(theta, X, y, l=1):
    '''still, leave theta_0 alone'''
    theta_j1_to_n = theta[1:]
    regularized_theta = (l / len(X)) * theta_j1_to_n

    # by doing this, no offset is on theta_0
    regularized_term = np.concatenate([np.array([0]), regularized_theta])

    return gradient(theta, X, y) + regularized_term

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def gradient(theta, X, y):
    '''just 1 batch gradient'''
    return (1 / len(X)) * X.T @ (sigmoid(X @ theta) - y)

def logistic_regression(X, y, l=1):
    """generalized logistic regression
    args:
        X: feature matrix, (m, n+1) # with incercept x0=1
        y: target vector, (m, )
        l: lambda constant for regularization

    return: trained parameters
    """
    # init theta
    theta = np.zeros(X.shape[1])

    # train it
    res = opt.minimize(fun=regularized_cost,
                       x0=theta,
                       args=(X, y, l),
                       method='TNC',
                       jac=regularized_gradient,
                       options={'disp': True})
    # get trained parameters
    final_theta = res.x

    return final_theta

def predict(x, theta):
    prob = sigmoid(x @ theta)
    return (prob >= 0.5).astype(int)

先训练一维参数,对"0" or "1" 做判断,y.shape是(10, 5000)

t0 = logistic_regression(X, y[0])
y.shape

y_pred = predict(X, t0)
print(t0.shape)
print('Accuracy={}'.format(np.mean(y[0] == y_pred)))

(401,)
Accuracy=0.9974

3. train k model(训练k维模型)

和1维模型的训练类似,循环10次

k_theta = np.array([logistic_regression(X, y[k]) for k in range(10)])
print(k_theta.shape)

(10, 401)
k_theta是10组向量,每组向量401个参数,与一个图片的400个像素对应,多出来的一个是截距,即初始向量

4. k维预测

  • think about the shape of k_theta, now you are making

  • after that, you run sigmoid to get probabilities and for each row, you find the highest prob as the answer
prob_matrix = sigmoid(X @ k_theta.T)
np.set_printoptions(suppress=True)

#预测的结果集:
prob_matrix
array([[0.99577491, 0.        , 0.00053534, ..., 0.00006469, 0.0000391 ,
        0.00172015],
       [0.99834696, 0.0000001 , 0.0000561 , ..., 0.00009682, 0.0000029 ,
        0.00008487],
       [0.99139841, 0.        , 0.00056797, ..., 0.00000655, 0.02655473,
        0.00197369],
       ...,
       [0.00000068, 0.04139552, 0.00321035, ..., 0.00012717, 0.00297688,
        0.70767493],
       [0.00001843, 0.00000013, 0.00000009, ..., 0.00164739, 0.06816852,
        0.8611639 ],
       [0.02879718, 0.        , 0.00012972, ..., 0.36613378, 0.00497566,
        0.14818646]])

y_pred = np.argmax(prob_matrix, axis=1)#返回沿轴axis最大值的索引,axis=1代表行
y_pred
array([0, 0, 0, ..., 9, 9, 7])  -->(5000,)

y_answer = raw_y.copy()
y_answer[y_answer==10] = 0 #前面raw_y中'10'表示'0'

print(classification_report(y_answer, y_pred))
              precision    recall  f1-score   support

           0       0.97      0.99      0.98       500
           1       0.95      0.99      0.97       500
           2       0.95      0.92      0.93       500
           3       0.95      0.91      0.93       500
           4       0.95      0.95      0.95       500
           5       0.92      0.92      0.92       500
           6       0.97      0.98      0.97       500
           7       0.95      0.95      0.95       500
           8       0.93      0.92      0.92       500
           9       0.92      0.92      0.92       500

    accuracy                           0.94      5000
   macro avg       0.94      0.94      0.94      5000
weighted avg       0.94      0.94      0.94      5000

看上表,‘0’、‘1’、‘6’预测的准确率比较高,'5'、'8'、'9'准确率比较低

三、神经网络模型

上面使用普通的逻辑回归来训练模型,神经网络其实就是多层逻辑回归

这里没有对神经网络模型进行训练,直接使用了已经训练好的参数来观察预测结果,猜测可能是降低难度,或者担心学生电脑跑步起来复杂的模型

机器学习作业3-神经网络_第5张图片
神经网络模型图示

加载模型参数,可以看到中间层是25个神经元,整个流程是
5000条数据->拟合出25组参数-->继续拟合出10组参数,分别用来预测0~9
中间加一层,真的就这么神奇吗???

def load_weight(path):
    data = sio.loadmat(path)
    return data['Theta1'], data['Theta2']

theta1, theta2 = load_weight('ex3weights.mat')

theta1.shape, theta2.shape
((25, 401), (10, 26))

因为在数据加载函数中,原始数据做了转置。然而,转置的数据与给定的参数不兼容,因为这些参数是由原始数据训练的。 所以为了应用给定的参数,我需要使用原始数据(不转置)??

这里说的要点啰嗦,大意应该是数据的存储结构吧,anyway,这不是重点,不丛深究

X, y = load_data('ex3data1.mat',transpose=False)
X = np.insert(X, 0, values=np.ones(X.shape[0]), axis=1)  # intercept

X.shape, y.shape
((5000, 401), (5000,))

feed forward prediction(前馈预测)

z2 = a1 @ theta1.T # (5000, 401) @ (25,401).T = (5000, 25)

z2.shape
z2 = np.insert(z2, 0, values=np.ones(z2.shape[0]), axis=1)
a2 = sigmoid(z2)

z3 = a2 @ theta2.T
a3 = sigmoid(z3)

y_pred = np.argmax(a3, axis=1) + 1  # numpy is 0 base index, +1 for matlab convention,返回沿轴axis最大值的索引,axis=1代表行
y_pred.shape

总结

虽然人工神经网络是非常强大的模型,但训练数据的准确性并不能完美预测实际数据,在这里很容易过拟合。

print(classification_report(y, y_pred))

              precision    recall  f1-score   support

           1       0.97      0.98      0.97       500
           2       0.98      0.97      0.97       500
           3       0.98      0.96      0.97       500
           4       0.97      0.97      0.97       500
           5       0.98      0.98      0.98       500
           6       0.97      0.99      0.98       500
           7       0.98      0.97      0.97       500
           8       0.98      0.98      0.98       500
           9       0.97      0.96      0.96       500
          10       0.98      0.99      0.99       500

    accuracy                           0.98      5000
   macro avg       0.98      0.98      0.98      5000
weighted avg       0.98      0.98      0.98      5000

对比上面的普通的逻辑回归,或者说是没有中间层的神经网络,准确率确实提升了不少

print(classification_report(y_answer, y_pred))
              precision    recall  f1-score   support

           0       0.97      0.99      0.98       500
           1       0.95      0.99      0.97       500
           2       0.95      0.92      0.93       500
           3       0.95      0.91      0.93       500
           4       0.95      0.95      0.95       500
           5       0.92      0.92      0.92       500
           6       0.97      0.98      0.97       500
           7       0.95      0.95      0.95       500
           8       0.93      0.92      0.92       500
           9       0.92      0.92      0.92       500

    accuracy                           0.94      5000
   macro avg       0.94      0.94      0.94      5000
weighted avg       0.94      0.94      0.94      5000

你可能感兴趣的:(机器学习作业3-神经网络)