期末计网满绩计划
教材:计算机网络(第七版)谢希仁版
透明传输:
SOH、EOT一个是开始的控制符号,一个是结束的控制服务。
用特殊比特流实现帧同步,某一个实际存在的事物看起来却好像不存在一样。表示无论是什么样的比特组合数据,都能够按照原样没有差错地通过这个数据链路层。因此,对锁传送地数据来说,这些数据就“看不见”链路层有说明妨碍数据传输地东西。或者说,数据链路层对这些数据来说是透明的。
为了解决透明传输地问题,就必须设法使数据中可能可能出现地“SOH”和“EOT”在接受端不被解释为控制字符。可以在SOH或是EOT前面插入一个转义字符ESC 而在接受端的数据链路层在把数据送往网络层之前删除这些插入的控制字符。这种方法也称为字节填充,字符填充。
数据链路层的协议非常简单,接收方每收到一个帧,就进行CRC检验,如果CRC检验正确,就收下这个帧,反之则丢弃这个帧,其他扫码也不做。
PPP协议的组成
- 一个将IP数据报封装到串行链路的方法。
- 一个用来建立、配置和测试数据链路层连接的链路控制协议LCP。
- 一套网络控制协议NCP。
各字段的意义
F :标志字段
A :地址字段
C :控制字段
字节填充
当信息字段中出现和标志字段意义的比特(0x7E)组合时,就必须采取一些措施是这种形式上和标志字段一样的比特不出现在信息字段中
上一章提到的,频分复用,时分复用,波分复用,波分复用和码分复用。
信道并非再用户通信时固定分配给用户。
随机接入:
所有用户可随机地发送信息。但如果恰巧有两个或更多地用户通信同一时刻发送信息,那么在共享媒体上产生碰撞(发生冲突)。
受控接入:
用户不能随机的发送信息而必须必须服从一定的控制。这类的典型代表有分散控制的令牌环局域网和集中控制的多点线路探询,也称为轮询。
硬件地址又称物理地址或MAC地址
地址字段的第一个字节的最低位为I/G位,当I/G位为0时,地址字段表示一个的单个站地址。当I/G位为1时表示组地址,用来进行多播。
地址字段第1字节的最低第二位规定为G/L位,当G/L为0时候是全球管理(保证全球没有相同的地址),当G/L为1时时本地管理,这时用户可任意分配网络上的地址。
载波监听,多点接入,碰撞检测,为了减少冲突发生的概率。
2t
就可以知道所遇到的数据帧是否遭受到了碰撞,因此以太网的端到端往返时间2t
为争用期。经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发送碰撞。以太网V2的MAC帧较为简单,由五个字段组成。
透明网桥是一种即插即用设备,只要把网桥接入局域网,不需要改动硬件和软件,无需设置地址开关,无需装入路由表或参数,网桥就能工作。
在不改变网络的实际拓扑,但在逻辑上则切断了某些链路,使得一台主机到所有其他主机的路径是无环路的树状结构,从而消除了都兜圈子现象。
防止交换机冗余链路产生的环路.用于确保以太网中无环路的逻辑拓扑结构.从而避免了广播风暴,大量占用交换机的资源。
交换机把集线器淘汰了。
1)在OSI/RM(OSI参考模型)中的工作层次不同
交换机和集线器在OSI/RM开放体系模型中对应的层次就不一样,集线器是同时工作在第一层(物理层)和第二层(数据链路层),而交换机至少是工作在第二层,更高级的交换机可以工作在第三层(网络层)和第四层(传输层)。
(2)交换机的数据传输方式不同
集线器的数据传输方式是广播(broadcast)方式,而交换机的数据传输是有目的的,数据只对目的节点发送,只是在自己的MAC地址表中找不到的情况下第一次使用广播方式发送,然后因为交换机具有MAC地址学习功能,第二次以后就不再是广播发送了,又是有目的的发送。这样的好处是数据传输效率提高,不会出现广播风暴,在安全性方面也不会出现其它节点侦听的现象。
(3)带宽占用方式不同
在带宽占用方面,集线器所有端口是共享集线器的总带宽,而交换机的每个端口都具有自己的带宽,这样就交换机实际上每个端口的带宽比集线器端口可用带宽要高许多,也就决定了交换机的传输速度比集线器要快许多。
(4)传输模式不同
集线器只能采用半双工方式进行传输的,因为集线器是共享传输介质的,这样在上行通道上集线器一次只能传输一个任务,要么是接收数据,要么是发送数据。
VLAN是由一些局域网网段构成的构成的与物理地址无关的逻辑组,而这些网段具有某些共同的需求。每一个VLAN的帧都有一个明确的标识符,指明发送这个帧的计算机是属于哪一个VLAN。
可以看出每一个VLAN的计算机处在不同的局域网中,也可以不再同一层楼中。
在100Mbit/s
的以太网中采用的方法是保持最短帧长不变,对于铜缆100Mbit/s
以太网,一个网段的最大长度是100m
,其最短帧长64字节
,即512比特
,因此争用期是5.12us
,帧间最小间隔现在是0.96us
,都10Mbit/s
以太网的1/10
。
在千兆以太网中加到一个介质访问控制帧尾部的若干个比特。用以让该帧传输更长的时间,避免发生冲突。
为避免发送短帧时的载波延伸开销,当很多短帧要发送时,第一个短帧要采用上面所说的载波延伸的方法进真充。
第一题(3-07)
要发送的数据为1101011011.采用CRC的生成多项式是P(X)=X^4+X+1,求应添加在数据后面的余数。数据在传输过程中最后一个1变成了0,问接收端能否发现?最后两个1都变成0呢?
第二题(3-09)
一个ppp帧的数据部分(用十六进制写出)是7D 5E FE 27 7D 5D 7D 5D 65 7D 5E。请问真正的数据是什么?
第三题(3-10)
PPP协议使用同步传输技术传送比特串0110111111111100。试问经过零比特填充后变成怎样的比特串?若接收端收到的PPP帧的数据部分是0001110111110111110110,问删除发送端发送端加入的零比特后变成什么样的比特串?
第四题(3-14)
常用的局域网的网络拓扑有哪些种类?现在最流行的是哪种结构?
第五题(3-16)
数据率为10Mbit/s的以太网在物理媒体上的元码传输属于为多少?
所以是加倍了,2*10e6 码元/s
第六题(3-18)
说明一下10BASE-T中的10、BASE、T所代表的意思?
第七题(3-20)
假定1km长的CSMA/CD网络的数据率为1Gbit/s。设信号在网络上的传播速率为200000 km/s。求能够使用此协议的最短帧长。
第八题(3-21)
什么叫比特时间,使用这种时间单位有什么好处,100比特时间是多少微秒?
第九题(3-22)
假定在使用CSMA/CD协议的10Mbit/s以太网中某个站在发送数据时检测到碰撞,执行退避算法时选择了随机数r=100.试问这个站需要等待多长时间后才能再次发送数据?如果是100Mbit/s的以太网
第十题(3-24)
假定站点A和点B在同一个10Mb/s以太网网段上。这两个站点之间的传播时延为225比特时间。现假定A开始发送一
帧,并且在A发送结束之前B也发送一帧。如果A发送的是以太网所允许的最短的帧,那么在A在检测到和B发生碰撞之前能否把自己的数据发送完毕?换言之,如果A在发送完毕之前并没有检测到碰撞,那么能否肯定A所发送的帧不会和B发送的帧发生碰撞?(提示:在计算时应当考虑到每一个以太网帧在发送到信道时,在MAC帧前面还要增加若干字节的前同步码和帧定界符)
这两题直接看答案吧,答案讲的很清楚(字太多不想打)
第十一题(3-25)
在上题中的站点A和B在t=0时同时发送了数据帧。当t=255比特时间,A和B同时检测到发生了碰撞,并且在t=255+48=273比特时间完成了干扰信号的传输。A和B在CSMA/CD算法中选择不同的r值退避。假定A和B选择的随机数分别是rA=0和rB=1。试问A和B各在什么时间开始重传其数据帧?A重传的数据帧在什么时间到达B?A重传的数据会不会和B重传的数据再次发生碰撞?B会不会在预定的重传时间停止发送数据?
第十二题(3-27)
有10个站连接到以太网上。试计算以下三种情况下每一个站所能得到的带宽。
(1)10个站都连接到一个10Mb/s以太网集线器
(2)10个站都连接到一个100Mb/s以太网集线器
(3)10个站都连接到一个10Mb/s以太网交换机
第十三题(3-33)
以太网交换机有6个接口,分别接到5台主机和一个路由器。在下面表中的“动作”一栏中,表示先后发送了4个帧。假定在开始时,以太网交换 机的交换表是空的。试把该表中其他的栏目都填写
动作 | 交换表状态 | 向哪些接口转发帧 | 说明 |
---|---|---|---|
A发送帧给D | 写入(A,1) | 所有接口 | 开始时交换表是空的,交换机不知应向何处的接口转发帧 |
D发送帧给A | 写入(D,4) | A | 交换机已经知道A连接在接口1 |
E发送帧给A | 写入(E,5) | A | 交换机已经知道A连接在接口1 |
A发送帧给E | 不变 | E | 交换机已经知道E连接在接口5 |