M. Frequent Subsets Problem - 状态压缩-2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

The frequent subset problem is defined as follows. Suppose UUU={1, 2,…\ldots,N} is the universe, and S1S_{1}S1,S2S_{2}S2,…\ldots,SMS_{M}SM are MMM sets over UUU. Given a positive constant α\alphaα,0<α≤10<\alpha \leq 10<α1, a subset BBB (B≠0B \neq 0B0) is α-frequent if it is contained in at least αM\alpha MαM sets of S1S_{1}S1,S2S_{2}S2,…\ldots,SMS_{M}SM, i.e. ∣{i:B⊆Si}∣≥αM\left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M{ i:BSi}αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, letU={1,2,3,4,5}U=\{1, 2,3,4,5\}U={ 1,2,3,4,5},M=3M=3M=3,α=0.5\alpha =0.5α=0.5, and S1={1,5}S_{1}=\{1, 5\}S1={ 1,5},S2={1,2,5}S_{2}=\{1,2,5\}S2={ 1,2,5},S3={1,3,4}S_{3}=\{1,3,4\}S3={ 1,3,4}. Then there are 333 α-frequent subsets of UUU, which are {1}\{1\}{ 1},{5}\{5\}{ 5} and {1,5}\{1,5\}{ 1,5}.

Input Format

The first line contains two numbers NNN and α\alpha α, where NNN is a positive integers, and α\alphaα is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., linei+1i + 1i+1 contains SiS_{i}Si,1≤i≤M1 \le i \le M1iM . Your program should be able to handle NNN up to 202020 and MMM up to 505050.

Output Format

The number of α\alphaα-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11



/*
题意:
给你一个n表示集合U是从1~n,一个频率0<α<=1
M个集合,M不是给你的要自己统计,最后让你找这样的子集:
在M个集合中出现次数 >= M*α的

题解:
枚举子集,看其在M个集合中出现的次数

优化:
1.如何存这个M个集合?
用二进制的思想,第几位表示数值为几的数在集合中存在
例如用 0011010 表示1、3、4属于集合Si
那么这个数x存在就可以表示为 1<
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
const int maxn=1e6+10;
long long S[55];
int cnt[30];
int main()
{
    string s;
    int n;
    double a;

    cin>>n>>a;
    getchar();
    int m = 0;
    while(getline(cin,s)){

        stringstream ss;
        ss << s; ///从s读进ss
        int tmp;
        while(ss>>tmp){ ///从ss依次提取
           S[m] += (1 << tmp);
           cnt[tmp] ++;
        }
        m++;
    }

   int minnum;
    if(a*m - int(a*m) > 0.0000001) minnum = ceil(a*m);
        else minnum = a*m;

    long long tempans = 0;
    for(int i = 0;i<30;++i){
        if(cnt[i]>=minnum) tempans += (1<= minnum) {
                ans++;break;
            }
        }
    }
    printf("%lld\n",ans);


    return 0;
}


你可能感兴趣的:(dp)