The frequent subset problem is defined as follows. Suppose UUU={1, 2,…\ldots…,N} is the universe, and S1S_{1}S1,S2S_{2}S2,…\ldots…,SMS_{M}SM are MMM sets over UUU. Given a positive constant α\alphaα,0<α≤10<\alpha \leq 10<α≤1, a subset BBB (B≠0B \neq 0B≠0) is α-frequent if it is contained in at least αM\alpha MαM sets of S1S_{1}S1,S2S_{2}S2,…\ldots…,SMS_{M}SM, i.e. ∣{i:B⊆Si}∣≥αM\left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M∣{ i:B⊆Si}∣≥αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, letU={1,2,3,4,5}U=\{1, 2,3,4,5\}U={ 1,2,3,4,5},M=3M=3M=3,α=0.5\alpha =0.5α=0.5, and S1={1,5}S_{1}=\{1, 5\}S1={ 1,5},S2={1,2,5}S_{2}=\{1,2,5\}S2={ 1,2,5},S3={1,3,4}S_{3}=\{1,3,4\}S3={ 1,3,4}. Then there are 333 α-frequent subsets of UUU, which are {1}\{1\}{ 1},{5}\{5\}{ 5} and {1,5}\{1,5\}{ 1,5}.
The first line contains two numbers NNN and α\alpha α, where NNN is a positive integers, and α\alphaα is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., linei+1i + 1i+1 contains SiS_{i}Si,1≤i≤M1 \le i \le M1≤i≤M . Your program should be able to handle NNN up to 202020 and MMM up to 505050.
The number of α\alphaα-frequent subsets.
15 0.4 1 8 14 4 13 2 3 7 11 6 10 8 4 2 9 3 12 7 15 2 8 3 2 4 5
11
/*
题意:
给你一个n表示集合U是从1~n,一个频率0<α<=1
M个集合,M不是给你的要自己统计,最后让你找这样的子集:
在M个集合中出现次数 >= M*α的
题解:
枚举子集,看其在M个集合中出现的次数
优化:
1.如何存这个M个集合?
用二进制的思想,第几位表示数值为几的数在集合中存在
例如用 0011010 表示1、3、4属于集合Si
那么这个数x存在就可以表示为 1<
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int maxn=1e6+10;
long long S[55];
int cnt[30];
int main()
{
string s;
int n;
double a;
cin>>n>>a;
getchar();
int m = 0;
while(getline(cin,s)){
stringstream ss;
ss << s; ///从s读进ss
int tmp;
while(ss>>tmp){ ///从ss依次提取
S[m] += (1 << tmp);
cnt[tmp] ++;
}
m++;
}
int minnum;
if(a*m - int(a*m) > 0.0000001) minnum = ceil(a*m);
else minnum = a*m;
long long tempans = 0;
for(int i = 0;i<30;++i){
if(cnt[i]>=minnum) tempans += (1<= minnum) {
ans++;break;
}
}
}
printf("%lld\n",ans);
return 0;
}