kafka 数据容错之 hbase保存 spark消费的offset

本文转载自:https://blog.csdn.net/xnlej/article/details/79037145

spark streaming 用direct 的方式有优势,但是也容易丢失数据,只能保证at least one ,不能保证exactly one ,要想保证后者,只能手动保存kafka的offset数据。实现方面参考了一位大神的java代码,把它改写成scala 代码,并修复相关bug。在此基础上进一步实现了事务机制

我们从Spark的官方文档可以知道,维护Spark内部维护Kafka便宜了信息是存储在HasOffsetRanges类的offsetRanges中,我们可以在Spark Streaming程序里面获取这些信息:

1 val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
这样我们就可以获取所以分区消费信息,只需要遍历offsetsList

import java.net.URLDecoder

import com.dianyou.utl.PropertiesUtil
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp
import org.apache.hadoop.hbase.filter.{BinaryComparator, RowFilter}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext, Time}
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

/**
  * 手工操作offset
  *        1 从hbase获取offset,从kafka拉取数据
  *        2 数据处理完后,把until offset 保存到hbase
  *        3 kafka 长时间挂掉之后,从kafka最早的offset 开始读取 此处还需要处理
  * Created by Administrator on 2017/12/28.
  */
object OffsetOperate {
  var hbaseProp = PropertiesUtil.getProperties("hbase")
  var kafkaconsumePro = PropertiesUtil.getProperties("kafkaconsume")
  def main(args: Array[String]): Unit = {

  val conf = new SparkConf().setAppName("sparkStreaming - offset operate")
    .setMaster("local[2]") // --master local[2] | spark://xx:7077 | yarn
    .set("spark.testing.memory", "2147480000")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc,Seconds(5))

    //kafka配置
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> kafkaconsumePro.getProperty("bootstrap.servers"),
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> kafkaconsumePro.getProperty("group"),
      "auto.offset.reset" -> "earliest", // 第一次读取时从topic 首位置开始读取
      "enable.auto.commit" -> (false: java.lang.Boolean)// kafka 不保存消费的offset
    )

    //监听频道
    val topics = Array(kafkaconsumePro.getProperty("topics"))
    // 获取hbase连接
    val hbaseConf = HBaseConfiguration.create()
    hbaseConf.set("hbase.zookeeper.quorum",hbaseProp.getProperty("quorum")) //zookeeper 集群
    hbaseConf.set("hbase.zookeeper.property.client","2181")
    hbaseConf.set("hbase.master", hbaseProp.getProperty("hbase_master"))
    hbaseConf.set("hbase.defaults.for.version.skip", "true")

    //获取连接对象
    val conn = ConnectionFactory.createConnection(hbaseConf)
    val admin = conn.getAdmin

    val tn = TableName.valueOf("hbase_consumer_offset") //hbase 表名
    val isExist = admin.tableExists(tn)
    val streams : InputDStream[ConsumerRecord[String,String]]= {
    if(isExist) {
      val table = new HTable(hbaseConf, "hbase_consumer_offset")
      val filter = new RowFilter(CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes(topics + "_")))
      println("============ 过滤器已经创建 ==========")
      val s = new Scan()
      s.setFilter(filter)
      val rs = table.getScanner(s)

      // 设置 offset
      val fromOffsets = scala.collection.mutable.Map[TopicPartition, Long]()
      var s1 = ""
      var s2 = 0
      var s3: Long = 0
        for (r: Result <- rs.next(200)) {
          println("rowKey : " + new String(r.getRow))
          for (keyvalue: KeyValue <- r.raw()) {
            if ("topic".equals(new String(keyvalue.getQualifier))) {
              s1 = new String(keyvalue.getValue)
              println("columnFamily :" + new String(keyvalue.getFamily) + " column :" +new String( keyvalue.getQualifier) + s1)
            } else if ("partition".equals(new String(keyvalue.getQualifier))){
              s2 = Bytes.toInt(keyvalue.getValue)
              println("columnFamily :" +  new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s2)
            } else if("offset".equals(new String(keyvalue.getQualifier))) { //if("offset".equals(new String(keyvalue.getQualifier)))
              s3 = Bytes.toLong(keyvalue.getValue)
              println("columnFamily :" + new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s3)
            }
          }
          fromOffsets.put(new TopicPartition(s1, s2), s3)
        }
      println("fromOffset is : "+fromOffsets)
        KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
          ConsumerStrategies.Assign(fromOffsets.keySet, kafkaParams, fromOffsets)) //(fromOffsets.keySet,kafkaParams,fromOffsets))
      }else{ //Hbase 里面不存在offset表,从topic首位置开始消费
        val htable = new HTableDescriptor(TableName.valueOf("hbase_consumer_offset"))
        htable.addFamily(new HColumnDescriptor(("topic_partition_offset")))
        admin.createTable(htable)
        println("表已经创建成功========" + htable)
      KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe(topics, kafkaParams))
      }
    }
  // val dstream = streams.map(x=>URLDecoder.decode(x.value()))

    // 操作成功后更新offset
    streams.foreachRDD{ rdd =>
      //if(!rdd.isEmpty()){
      // 打成一个事务,把业务计算和offset保存放在一起,要么成功,要么一起失败,实现精确一次的消费
      import scala.collection.JavaConversions._
      val table = new HTable(hbaseConf,"hbase_consumer_offset")
      table.setAutoFlush(false, false)
      var putList:List[Put] = List()
        val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges  // RDD[ConsumerRecord[String,String]] 强转成offsetRanges
        for(offsetRange <- offsetRanges){
          println("the topic is "+offsetRange.topic)
          println("the partition is "+offsetRange.partition)
          println("the fromOffset is "+offsetRange.fromOffset)
          println("the untilOffset is "+offsetRange.untilOffset)
          println("the object is "+offsetRange)
         // val table = new HTable(hbaseConf,"hbase_consumer_offset")
         // table.setAutoFlush(false, false)
          val put  = new Put(Bytes.toBytes(offsetRange.topic+"_"+offsetRange.partition))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("topic"),Bytes.toBytes(offsetRange.topic))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("partition"),Bytes.toBytes(offsetRange.partition))
          put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("offset"),Bytes.toBytes(offsetRange.untilOffset))
          putList = put+:putList
         // println("add data success !")
        }

        println("the RDD records are "+rdd.map{x =>URLDecoder.decode(x.value())}.collect.foreach(println)) // 程序的计算逻辑
      //  }
      table.put(putList)
      table.flushCommits()
      println("add and compute data success !")
      }
    ssc.start()
    ssc.awaitTermination()
  }
}

此处还有一个问题,当kafka 数据清掉之后,从hbase中读取offset数据到kafka查询时,会读不到数据 报数组越界的错误,有时间再来完善下
参考链接 :https://www.jianshu.com/p/667e0f58b7b9

你可能感兴趣的:(kafka 数据容错之 hbase保存 spark消费的offset)