数据挖掘实践指南读书笔记6

写在之前

本书涉及的源程序和数据都可以在以下网站中找到:http://guidetodatamining.com/
这本书理论比较简单,书中错误较少,动手锻炼较多,如果每个代码都自己写出来,收获不少。总结:适合入门。
欢迎转载,转载请注明出处,如有问题欢迎指正。
合集地址:https://www.zybuluo.com/hainingwyx/note/559139

朴素贝叶斯和文本

训练阶段

  1. 将标识为同一假设的文档合并成一个文本文件

  2. 计算词在该文件中的出现次数n,形成一个词汇表

  3. 对于词汇表中的每个词w_k计算器在文本中的出现次数,记为n_k

  4. 对词汇表中的每个词(去除停用词)w_k,计算

class BayesText:

    def __init__(self, trainingdir, stopwordlist):
        """This class implements a naive Bayes approach to text
        classification
        trainingdir is the training data. Each subdirectory of
        trainingdir is titled with the name of the classification
        category -- those subdirectories in turn contain the text
        files for that category.
        The stopwordlist is a list of words (one per line) will be
        removed before any counting takes place.
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}         #停用词字典
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        #filter out files that are not directories
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            print('    ' + category)
            # 计算当前类别的单词和单词数量,单词的总量
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category)
        # I am going to eliminate any word in the 所有种类的单词库vocabulary
        # that doesn't occur at least 3 times
        toDelete = []
        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # mark word for deletion
                # can't delete now because you can't delete
                # from a list you are currently iterating over
                toDelete.append(word)
        # now delete
        for word in toDelete:
            del self.vocabulary[word]
        # now compute probabilities
        vocabLength = len(self.vocabulary)
        print("Computing probabilities:")
        for category in self.categories:
            print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                # 条件概率计算
                self.prob[category][word] = (float(count + 1)
                                             / denominator)
        print ("DONE TRAINING\n\n")
                    
    # input:trainingdir训练文件的目录, category训练文件的种类
    # return: (counts, total) (当前文件的单词和单词数量,所有单词的数量)
    def train(self, trainingdir, category):
        """counts word occurrences for a particular category"""
        currentdir = trainingdir + category
        files = os.listdir(currentdir)
        counts = {}
        total = 0
        for file in files:
            #print(currentdir + '/' + file)
            f = codecs.open(currentdir + '/' + file, 'r', 'iso8859-1')
            for line in f:
                tokens = line.split()
                for token in tokens:
                    # get rid of punctuation and lowercase token
                    token = token.strip('\'".,?:-')
                    token = token.lower()
                    if token != '' and not token in self.stopwords:
                        self.vocabulary.setdefault(token, 0)
                        self.vocabulary[token] += 1#所有文档的单词和单词数量
                        counts.setdefault(token, 0)
                        counts[token] += 1#当前文件的单词和单词数量
                        total += 1#所有单词的数量
            f.close()
        return(counts, total)
# test code
bT = BayesText(trainingDir, stoplistfile)
bT.prob['rec.motorcycles']["god"]

分类阶段

如果概率非常小,Python无法计算,可以采用取对数的形式。
停用词:当停用词是噪声时,去掉这些词能减少处理量,提高性能。个别情况下要重新考虑停用词。如性犯罪者会比一般人更多使用me、you这类词语。

    def classify(self, itemVector, numVector):
        """Return class we think item Vector is in"""
        results = []
        sqrt2pi = math.sqrt(2 * math.pi)
        for (category, prior) in self.prior.items():
            prob = prior
            col = 1
            for attrValue in itemVector:
                if not attrValue in self.conditional[category][col]:
                    # we did not find any instances of this attribute value
                    # occurring with this category so prob = 0
                    prob = 0
                else:
                    prob = prob * self.conditional[category][col][attrValue]
                col += 1
            col = 1
            for x in  numVector:
                mean = self.means[category][col]
                ssd = self.ssd[category][col]
                ePart = math.pow(math.e, -(x - mean)**2/(2*ssd**2))
                prob = prob * ((1.0 / (sqrt2pi*ssd)) * ePart)
                col += 1
            results.append((prob, category))
        # return the category with the highest probability
        #print(results)
        return(max(results)[1])
    
# test code
bT.classify(testDir+ 'rec.motorcycles/104673')

10-fold cross

from __future__ import print_function
import os, codecs, math

class BayesText:
    # input:训练文件目录,停用词,忽略的文件子集
    def __init__(self, trainingdir, stopwordlist, ignoreBucket):
        """This class implements a naive Bayes approach to text
        classification
        trainingdir is the training data. Each subdirectory of
        trainingdir is titled with the name of the classification
        category -- those subdirectories in turn contain the text
        files for that category.
        The stopwordlist is a list of words (one per line) will be
        removed before any counting takes place.
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        #filter out files that are not directories,in this program, neg and pos
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            #print('    ' + category)
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category,
                                                 ignoreBucket)
        # I am going to eliminate any word in the vocabulary
        # that doesn't occur at least 3 times
        toDelete = []
        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # mark word for deletion
                # can't delete now because you can't delete
                # from a list you are currently iterating over
                toDelete.append(word)
        # now delete
        for word in toDelete:
            del self.vocabulary[word]
        # now compute probabilities
        vocabLength = len(self.vocabulary)
        #print("Computing probabilities:")
        for category in self.categories:
            #print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                self.prob[category][word] = (float(count + 1)
                                             / denominator)
        #print ("DONE TRAINING\n\n")
                    

    def train(self, trainingdir, category, bucketNumberToIgnore):
        """counts word occurrences for a particular category"""
        ignore = "%i" % bucketNumberToIgnore
        currentdir = trainingdir + category
        directories = os.listdir(currentdir)
        counts = {}
        total = 0
        for directory in directories:
            if directory != ignore:
                currentBucket = trainingdir + category + "/" + directory
                files = os.listdir(currentBucket)
                #print("   " + currentBucket)
                for file in files:
                    f = codecs.open(currentBucket + '/' + file, 'r', 'iso8859-1')
                    for line in f:
                        tokens = line.split()
                        for token in tokens:
                            # get rid of punctuation and lowercase token
                            token = token.strip('\'".,?:-')
                            token = token.lower()
                            if token != '' and not token in self.stopwords:
                                self.vocabulary.setdefault(token, 0)
                                self.vocabulary[token] += 1
                                counts.setdefault(token, 0)
                                counts[token] += 1
                                total += 1
                    f.close()
        return(counts, total)
                    
                    
    def classify(self, filename):
        results = {}
        for category in self.categories:
            results[category] = 0
        f = codecs.open(filename, 'r', 'iso8859-1')
        for line in f:
            tokens = line.split()
            for token in tokens:
                #print(token)
                token = token.strip('\'".,?:-').lower()
                if token in self.vocabulary:
                    for category in self.categories:
                        if self.prob[category][token] == 0:
                            print("%s %s" % (category, token))
                        results[category] += math.log(
                            self.prob[category][token])
        f.close()
        results = list(results.items())
        results.sort(key=lambda tuple: tuple[1], reverse = True)
        # for debugging I can change this to give me the entire list
        return results[0][0]

    # input: 测试文件的分类目录,当前类别, 忽略子集
    # return: 当前类别下的分类结果{0:12,1:23}
    def testCategory(self, direc, category, bucketNumber):
        results = {}
        directory = direc + ("%i/" % bucketNumber)
        #print("Testing " + directory)
        files = os.listdir(directory)
        total = 0
        #correct = 0
        for file in files:
            total += 1
            result = self.classify(directory + file)
            results.setdefault(result, 0)
            results[result] += 1
            #if result == category:
            #               correct += 1
        return results
        
    # input: 测试文件目录, 忽略的子集文件
    # return: 所有类别的分类结果{1:{0:12,1:23},}
    def test(self, testdir, bucketNumber):
        """Test all files in the test directory--that directory is
        organized into subdirectories--each subdir is a classification
        category"""
        results = {}
        categories = os.listdir(testdir)
        #filter out files that are not directories
        categories = [filename for filename in categories if
                      os.path.isdir(testdir + filename)]
        for category in categories:
            #print(".", end="")
            results[category] = self.testCategory(
                testdir + category + '/', category, bucketNumber)
        return results

def tenfold(dataPrefix, stoplist):
    results = {}
    for i in range(0,10):
        bT = BayesText(dataPrefix, stoplist, i)
        r = bT.test(theDir, i)
        for (key, value) in r.items():
            results.setdefault(key, {})
            for (ckey, cvalue) in value.items():
                results[key].setdefault(ckey, 0)
                results[key][ckey] += cvalue
                categories = list(results.keys())
    categories.sort()
    print(   "\n       Classified as: ")
    header =    "          "
    subheader = "        +"
    for category in categories:
        header += "% 2s   " % category
        subheader += "-----+"
    print (header)
    print (subheader)
    total = 0.0
    correct = 0.0
    for category in categories:
        row = " %s    |" % category 
        for c2 in categories:
            if c2 in results[category]:
                count = results[category][c2]
            else:
                count = 0
            row += " %3i |" % count
            total += count
            if c2 == category:
                correct += count
        print(row)
    print(subheader)
    print("\n%5.3f percent correct" %((correct * 100) / total))
    print("total of %i instances" % total)

# change these to match your directory structure
prefixPath = "data/review_polarity/"
theDir = prefixPath + "/txt_sentoken/"
stoplistfile = prefixPath + "stopwords25.txt"
tenfold(theDir, stoplistfile)

你可能感兴趣的:(数据挖掘实践指南读书笔记6)