1555: Inversion Sequence
Time Limit: 2 Sec Memory Limit: 256 MB
Submit: 478 Solved: 173
Description
For sequence i1, i2, i3, … , iN, we set aj to be the number of members in the sequence which are prior to j and greater to j at the same time. The sequence a1, a2, a3, … , aN is referred to as the inversion sequence of the original sequence (i1, i2, i3, … , iN). For example, sequence 1, 2, 0, 1, 0 is the inversion sequence of sequence 3, 1, 5, 2, 4. Your task is to find a full permutation of 1~N that is an original sequence of a given inversion sequence. If there is no permutation meets the conditions please output “No solution”.
Input
There are several test cases.
Each test case contains 1 positive integers N in the first line.(1 ≤ N ≤ 10000).
Followed in the next line is an inversion sequence a1, a2, a3, … , aN (0 ≤ aj < N)
The input will finish with the end of file.
Output
For each case, please output the permutation of 1~N in one line. If there is no permutation meets the conditions, please output “No solution”.
Sample Input
5
1 2 0 1 0
3
0 0 0
2
1 1
Sample Output
3 1 5 2 4
1 2 3
No solution
题意:
设有一个1~n的全排列,满足给定输入的逆序对数,求这个全排列。
例如:输入5 1 2 0 1 0,即求一个1~5的全排列,满足,1有一个逆序对(即1的前面有且只有1个数字大于它),2有两个逆序对(即2前面有且只有2个数字大于它),3有零个逆序对(3前面没有数字大于它),以此类推。可得3 1 5 2 4。
思路:
模拟这个过程,样例5 1 2 0 1 0中,1前面有1个数字大于它,又因为1是1~n中最小,序列中所有数字都大于它,即1前面只能有一个数字,则1前面留一个空位,即1在从左往右数第2个空位插入,得
_ 1 _ _ _ _
2前面有2个数字大于它,除去1,2在1~n中又最小,同理,2前面留两个空位,在第3个空位插入,得
_ 1 _ 2 _ _
3前面没有数字大于它,同理除去1、2,3是1~n中最小,则3前面留零个空位,在第1个空位插入,得
3 1 _ 2 _
4前面有1个数字大于它,同理,4前面留一个空位,在第2个空位插入,得
3 1 _ 2 4
5前面没有数字大于它,在第1个空位插入,得
3 1 5 2 4
得到结果3 1 5 2 4。
即从1开始到n,每一个数字都去考虑,留几个空位给后面比它大的数字,那么就要实时更新每一段区间空位的数量,使用线段树。
#include
#include
using namespace std;
const int maxn = 20000 + 5;
int tree[maxn * 4];
int buf[maxn];
int ans[maxn];
// 更新线段树
void Update(int root) {
tree[root] = tree[root * 2] + tree[root * 2 + 1];
return;
}
// 递归构造线段树
void Build(int root, int l, int r) {
if (l == r) {
tree[root] = 1;
return;
}
int mid = (l + r) / 2;
Build(root * 2, l, mid);
Build(root * 2 + 1, mid + 1, r);
Update(root);
return;
}
// 找到位置插入数字
int Insert(int val, int root, int l, int r) {
if (l == r) {
tree[root] = 0;
return l;
}
int mid = (l + r) / 2;
int ret;
if (tree[root << 1] >= val)
ret = Insert(val, root * 2, l, mid);
else
ret = Insert(val - tree[root * 2], root * 2 + 1, mid + 1, r);
Update(root);
return ret;
}
int main() {
int n;
while (scanf("%d", &n) != EOF) {
// memset(tree, 0, sizeof(tree));
Build(1, 1, n);
bool noSolution = false;
for (int i = 1; i <= n; ++i)
scanf("%d", buf + i);
for (int i = 1; i <= n; ++i) {
// 任何时候空位数小于所给逆序对数,即当前数字没位置插入,则无解
if (tree[1] <= buf[i]) {
noSolution = true;
break;
}
// 在第buf[i]+1个位置插入i
ans[Insert(buf[i] + 1, 1, 1, n)] = i;
}
if (noSolution)
printf("No solution\n");
else {
for (int i = 1; i < n; ++i)
printf("%d ", ans[i]);
printf("%d\n", ans[n]);
}
}
return 0;
}