LeetCode - Validate Binary Search Tree

Validate Binary Search Tree

2013.12.31 18:48

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1

  / \

 2   3

    /

   4

    \

     5

The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

Solution:

  The inorder traversal of a BST is a sorted array, that's how my code verified the tree.

  Perform an inorder traversal and see if the result is sorted. If so, valid; otherwise, no. An extra array is needed to hold the inorder traversal result.

  Time complexity and space complexity are both O(n), where n is the number of nodes in a tree.

Accepted code:

 1 // 1WA, 1CE, 1AC

 2 /**

 3  * Definition for binary tree

 4  * struct TreeNode {

 5  *     int val;

 6  *     TreeNode *left;

 7  *     TreeNode *right;

 8  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}

 9  * };

10  */

11 class Solution {

12 public:

13     bool isValidBST(TreeNode *root) {

14         // IMPORTANT: Please reset any member data you declared, as

15         // the same Solution instance will be reused for each test case.

16         if(root == nullptr){

17             return true;

18         }

19         arr.clear();

20         // 1WA here, the in-order traversal of BST is sorted.

21         inorderTraversal(root);

22         

23         int i, n;

24         

25         n = arr.size();

26         for(i = 0; i < n - 1; ++i){

27             if(arr[i] >= arr[i + 1]){

28                 break;

29             }

30         }

31         arr.clear();

32         

33         return (i == n - 1);

34     }

35 private:

36     vector<int> arr;

37     

38     void inorderTraversal(TreeNode *root) {

39         // 1CE, null or nullptr...

40         if(root == nullptr){

41             return;

42         }

43         

44         if(root->left != nullptr){

45             inorderTraversal(root->left);

46         }

47         arr.push_back(root->val);

48         if(root->right != nullptr){

49             inorderTraversal(root->right);

50         }

51     }

52 };

 

你可能感兴趣的:(Binary search)