- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距
毕设宇航
QQ767172261yolov5单目测距
可实现对图片,视频,摄像头的检测项目概述本项目旨在实现一个集成了YOLOv5目标检测算法、图形用户界面(GUI)以及单目测距功能的系统。该系统能够对图片、视频或实时摄像头输入进行目标检测,并估算目标的距离。通过结合YOLOv5的强大检测能力和单目测距技术,系统能够在多种应用场景中提供高效、准确的目标检测和测距功能。技术栈YOLOv5:用于目标检测的深度学习模型。OpenCV:用于图像处理和单目测距
- 目标检测-YOLOv1
wydxry
深度学习目标检测YOLO人工智能
YOLOv1介绍YOLOv1(YouOnlyLookOnceversion1)是一种用于目标检测的深度学习算法,由JosephRedmon等人于2016年提出。它基于单个卷积神经网络,将目标检测任务转化为一个回归问题,通过在图像上划分网格并预测每个网格中是否包含目标以及目标的位置和类别来实现目标检测。YOLOv1的主要特点包括:快速的检测速度:相比于传统的目标检测算法,YOLOv1具有更快的检测速
- 《深入浅出多模态》(九)多模态经典模型:MiniGPT-v2、MiniGPT5
GoAI
深入浅出多模态深入浅出AI多模态vllmLLM大模型stablediffusion
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- yolo 3d车辆目标检测(教程+代码)
阿利同学
YOLO3d目标检测计算机视觉人工智能3d目标检测
关于3D目标检测及其与YOLO3D相关性的概览:3D目标检测:开启视觉感知的新维度随着计算机视觉技术的发展,目标检测算法已经成为人工智能领域的重要组成部分。从自动驾驶汽车到无人机导航,再到增强现实(AR)应用,3D目标检测技术正在逐步改变我们与周围环境交互的方式。传统的2D目标检测虽然取得了显著的进步,但在处理三维空间中的物体识别与定位时却显得力不从心。因此,3D目标检测技术应运而生,它不仅能够识
- AI深度学习项目-yolo4_tiny 垃圾分类识别系统
毕设宇航
yolov4垃圾识别QQ767172261
项目概述目标本项目旨在开发一个高效的垃圾分类识别系统,利用深度学习技术特别是YOLOv4-tiny版本来实现垃圾的自动分类。YOLOv4-tiny作为YOLOv4的一个轻量化版本,在保证较高精度的同时,能够提供更快的检测速度,非常适合资源受限的设备或者要求实时性的应用场景。技术栈深度学习框架:PyTorch目标检测算法:YOLOv4-tiny编程语言:Python硬件加速:GPU(如果可用)功能特
- Datawhale AI夏令营第五期CV Task02
m0_60530253
人工智能深度学习
一、yolo模型介绍YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。YOLO算法的一个显著特点是它在单个网络
- 【论文笔记】:LAYN:用于小目标检测的轻量级多尺度注意力YOLOv8网络
hhhhhhkkkyyy
论文阅读目标检测YOLO
背景针对嵌入式设备对目标检测算法的需求,大多数主流目标检测框架目前缺乏针对小目标的具体改进,然后提出的一种轻量级多尺度注意力YOLOv8小目标检测算法。小目标检测精度低的原因随着网络在训练过程中的加深,检测到的目标容易丢失边缘信息和灰度信息等。获得高级语义信息也较少,图像中可能存在一些噪声信息,误导训练网络学习不正确的特征。映射到原始图像的感受野的大小。当感受野相对较小时,空间结构特征保留较多,但
- 基于yolov8的脑肿瘤检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO人工智能
【算法介绍】基于YOLOv8的脑肿瘤检测系统是一项前沿的医疗应用,该系统利用YOLOv8这一高效的目标检测算法,实现对脑肿瘤病灶的快速、准确识别。YOLOv8作为YOLO系列的最新版本,不仅继承了前代版本在速度和精度上的优势,还通过改进的网络结构和优化策略,进一步提升了模型性能。在脑肿瘤检测中,YOLOv8通过深度学习技术,自动从脑部图像中提取特征,并学习目标的特征表示和位置信息。系统采用模块化设
- NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL、SQL-PaLM)、新一代数据集BIRD-SQL解读
汀、人工智能
LLM工业级落地实践copilot人工智能NL2SQLLLM自然语言处理NL2DSLText2SQL
NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL)、新一代数据集BIRD-SQL解读NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQ
- 基于yolov8的8种人脸表情检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpython开发语言
【算法介绍】基于YOLOv8的人脸表情检测系统是一个结合了先进目标检测算法(YOLOv8)与深度学习技术的项目,旨在实时或离线地识别并分类人脸表情(如快乐、悲伤、愤怒、惊讶、恐惧、厌恶、中立等)。以下是一个简短的介绍,概述了该系统Python源码的核心要点:该系统直接利用YOLOv8模型进行人脸表情识别。YOLOv8以其高效的速度和准确性著称,非常适合实时应用。Python源码实现通常包括以下几个
- 【YOLO系列】YOLO介绍
有品位的小丑
目标检测与生成式模型学习记录YOLO目标跟踪人工智能
目录前言一、算法特点二、工作原理前言YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。一、算法特点速度快YOL
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- Conformer 模型实现教程
邬稳研Beneficient
Conformer模型实现教程ConformerOfficialcodeforConformer:LocalFeaturesCouplingGlobalRepresentationsforVisualRecognition项目地址:https://gitcode.com/gh_mirrors/con/Conformer1.项目目录结构及介绍在pengzhiliang/Conformer开源项目中,
- 【论文解读】Macroblock Level Rate Control for Low Delay H.264/AVC based Video Communication
Codec Conductor
论文解读#x264h.264x264音视频码率控制视频编解码AVC
级别:IEEE时间:2015作者:MinGao等机构:哈尔滨工业大学下载:MacroblockLevelRateControlforLowDelayH.264/AVCbasedVideoCommunication摘要算法目的:提出了一种针对低延迟H.264/AVC视频通信的宏块(MB)级别速率控制算法。算法基础:基于ρ域速率模型,该模型涉及量化后零变换系数的百分比(ρ)。关键技术:使用指数模型来描
- 论文解读:从Dijkstra的On-the-Fly到Go的三色标记算法,并行垃圾回收的起源
liuwill
计算机科学算法后端论文阅读
我们经常听到关于垃圾回收的说法是,某种垃圾回收算法是一种特定语言特有的,容易理解成,垃圾回收的算法跟特定编程语言是绑定的,但是仔细想想,垃圾回收器是一种分配和管理内存的机制或者程序,内存管理跟语言本身是没有必然联系的,只是语言运行时实现时的一种策略选择。更严格来说的,其实不仅仅是垃圾回收策略,一些语言的语法特性,也不是某种语言专属,语言的实现者完全可以通过组合,自己选择自己偏好的策略,发明更多的语
- 机器人建图算法2.1从栅格占据地图到ESDF地图
RuiH.AI
机器人建图算法学习算法
机器人建图算法2.1从栅格占据地图到ESDF地图前言论文解读示意图说明伪代码说明算法流程总结前言最基础的地图是占据栅格地图Occupancymap,每个格子标明了该位置是否被物体占据。然而对于规划和避障而言,地图中的占据信息是不够的,还需要障碍距离、方向等信息。TSDF和ESDF地图弥补了这个缺陷。IROS2010:ImprovedupdatingofEuclideandistancemapsan
- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 【计算机视觉面经四】基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)
旅途中的宽~
计算机视觉面经总结计算机视觉深度学习目标检测YOLORCNN
文章目录一、前言二、两阶段目标检测算法2.1RCNN2.2Fast-RCNN2.3FasterR-CNN三、多阶段目标检测算法3.1CascadeR-CNN四、单阶段目标检测算法4.1编码方式4.1.1基于中心坐标4.1.1.1方案14.1.1.2方案24.1.1.3方案34.2YOLOv14.3SSD4.4YOLOv24.5RetinaNet4.6YOLOv34.7YOLOv44.8YOLOv5
- ChatGPT聊YOLO
AIWalker-Happy
YOLOchatgptYOLO
最近ChatGPT大伙,其概括摘要能力非常强。YOLO系列算法也是目标检测领域非常重要的一个研究路线,那么ChatGPT是如何看待各个YOLO算法的呢?那我们去问问它如何看待各个版本的YOLO。截止到2021年9月,YOLOv6尚未发布。因此,无法对其进行价值和贡献的评价。在这之前,最新的YOLO系列算法是YOLOv5。如果有关于YOLOv5或者其他目标检测算法的问题,欢迎随时提问。----Cha
- 互联网加竞赛 机器视觉目标检测 - opencv 深度学习
Mr.D学长
pythonjava
文章目录0前言2目标检测概念3目标分类、定位、检测示例4传统目标检测5两类目标检测算法5.1相关研究5.1.1选择性搜索5.1.2OverFeat5.2基于区域提名的方法5.2.1R-CNN5.2.2SPP-net5.2.3FastR-CNN5.3端到端的方法YOLOSSD6人体检测结果7最后0前言优质竞赛项目系列,今天要分享的是机器视觉opencv深度学习目标检测该项目较为新颖,适合作为竞赛课题
- 这个论文解读 agent 比GPT-4 还要牛!强烈推荐!
夕小瑶
人工智能自然语言处理transformerchatgpt深度学习神经网络
已经2024年了,该出现一个论文解读AIAgent了。但是目前市面上哪怕最强的GPT-4来做论文解读也是不行,所以我们顺手做了这样一个agent,因为——我们公司的算法同学也需要刷论文啊喂=,=而且我们也经常人工写论文解读嘛,所以干脆就顺手做一个得了,不求赚钱,但求有点用。真正尝试过用gpt去刷论文、写论文解读的小伙伴,一定深有体验——费劲。其他agents也没有能搞定的,所以我们就索性做了个,传
- YoloV8 +可视化界面+GUI+交互式界面目标检测与跟踪
阿利同学
YOLO目标检测人工智能目标检测可视化界面yolo界面制作交互
YoloV8可视化界面GUI本项目旨在基于YoloV8目标检测算法开发一个直观的可视化界面,使用户能够轻松上传图像或视频,并对其进行目标检测。通过图形用户界面,用户可以方便地调整检测参数、查看检测结果,并将结果保存或导出。同时,该界面还将提供实时目标检测功能,让用户能够在视频流中实时观察目标的检测情况。这个项目将结合YoloV8强大的检测能力和直观的用户交互,为用户提供一种全新的目标检测体验。如何
- 目标检测算法之YOLOv5的应用实例(零售业库存管理、无人机航拍分析、工业自动化领域应用的详解)
小嘤嘤怪学
目标检测算法YOLOYOLOv5深度学习
1.YOLOv5在"零售业库存管理"领域的应用在零售业库存管理中,YOLOv5可以帮助自动化商品识别和库存盘点过程。通过使用深度学习模型来实时识别货架上的商品,零售商可以更高效地管理库存,减少人工盘点的时间和成本。以下是一个使用YOLOv5进行商品识别的Python脚本示例:importcv2importyolov5#初始化YOLOv5模型model=yolov5.YOLOv5(weights="
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 目标检测算法之YOLOv5在乒乓球赛事中运动员行为分析领域的应用实例详解(优化版--下)
小嘤嘤怪学
目标检测算法YOLOyolov5人工智能深度学习计算机视觉
为了进一步提升代码的效率和可维护性,可以考虑以下几个方面的优化:1.**视频解码优化**:-使用OpenCV的`preprocess`功能来直接从原始视频帧中提取RGB图像,避免不必要的复制和转换。2.**模型推理优化**:-使用ONNXRuntime的定制配置,如启用自动形状推测和启用量化模式,来进一步提高模型推理速度。3.**结果后处理优化**:-使用更高效的非极大值抑制(NMS)实现,如使用
- 目标检测算法之YOLOv5的应用实例(智能交通信号控制、体育赛事分析、野生动物研究领域应用的详解)
小嘤嘤怪学
目标检测YOLO自动驾驶
1.YOLOv5在"智能交通信号控制"领域的应用在智能交通信号控制领域,YOLOv5可以通过实时检测交通流量的变化来辅助信号灯的调度决策。例如,在交通繁忙的交叉路口,YOLOv5可以检测到各个方向的车流量,帮助交通控制系统动态调整绿灯时长,减少拥堵。以下是一个简化的Python示例,演示了如何使用YOLOv5来检测视频流中的车辆,并据此作出一些基本的决策。importcv2importyolov5
- 目标检测算法之YOLOv5在社交媒体内容审核领域的应用实例详解
小嘤嘤怪学
YOLO媒体yolov5深度学习算法目标检测人工智能
目录YOLOv5具体工作流程应用实例及代码优化再优化继续优化YOLOv5具体工作流程YOLOv5可以在社交媒体内容审核领域发挥重要作用,具体工作流程如下:1.**数据准备**:首先,收集大量标记过的图像和视频数据,这些数据包含了需要被检测的内容类别,例如暴力、色情、仇恨言论等的视觉标识。2.**模型训练**:使用这些数据对YOLOv5模型进行训练。训练过程中,模型学习如何从图像中识别和定位这些不良
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本