- 【WRF模拟】WRF运行时进程数限制的原因及报错解决方案
WW、forever
WRF模型原理及应用WRF
目录WRF运行时进程数限制的原因网格块的最小尺寸要求嵌套域的尺寸和分辨率进程数与网格划分的关系案例1:四层嵌套错误:ERROR:ReducetheMPIrankcount,orredistributethetasks解决方法参考WRF运行时进程数限制的原因在进行wrf模拟时,若内层网格分辨率较高,模拟时间较久,可适当增加运行内核数,但如何确定合适的内核数呢?太高会导致模型报错,太低又会增加模型运行
- y_t_rank = len(y_t.shape.as_list()) AttributeError: ‘tuple‘ object has no attribute ‘shape‘’
专业混水
tensorflowpythontensorflow深度学习anaconda
在model.fit()的时候遇到了如下问题:Epoch1/400Traceback(mostrecentcalllast):File"F:/code/MYSTUDY/MODEL_version0.0/comparsion/trainST.py",line234,inmain()File"F:/code/MYSTUDY/MODEL_version0.0/comparsion/trainST.py"
- 深度定制:Embedding与Reranker模型的微调艺术
从零开始学习人工智能
embedding人工智能
微调是深度学习中的一种常见做法,它允许模型在预训练的基础上进一步学习特定任务的特定特征。对于Embedding模型,微调的目的是让模型更适配特定的数据集,从而取得更好的召回效果。这通常涉及到使用特定的数据集对模型进行额外的训练,以便模型能够学习到数据集中的特定语义关系。微调过程可以使用不同的库和框架来实现,例如sentence-transformers库,它提供了便捷的API来调整Embeddin
- linux脚本sed替换变量,sed 命令中替换值为shell变量
诺坎普之约
linux脚本sed替换变量
文章目录sed命令中替换值为shell变量替换基本语法sed中替换使用shell变量总结参考文档sed命令中替换值为shell变量替换基本语法大家都是sed有很多用法,最多就应该是替换一些值了。让我们先回忆sed的替换语法。在sed进行替换的时候sed-i's/old/new/g'1.txtecho"hellooldfrank"|sed's/old/new/g'结果如下:hellonewfrank
- 2022-09-30
AustinPup
景气指数:0.3波动率-=-=-=-=-=-=-=rank收益弹压最值1/6宝盈盈润纯债0.4006242y:4.24w:-0.01m:0.27d:0.02弹:-0.10+:0.89-:0.8-:0.01+:0.04A:4.02/6诺德安鸿纯债0.36010440y:3.55w:-0.01m:0.29d:0.0弹:+0.02+:0.88-:0.9-:0.01+:0.04A:4.03/6华富恒盛纯债
- 【Python・统计学】威尔科克森符号秩检验/Wilcoxon signed-rank test(原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:威尔科克森符号秩检验(英文名:Wilcoxonsigned-ranktest)【1.简单原理和步骤】【2.应用条件】【3.数据实例以及Python代码】1.简单原理和步骤威尔科克森符号秩检验是一种非参数检验的方法,需要数据
- Python酷库之旅-第三方库Pandas(115)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲506、pandas.DataFrame.rank方法506-1、语法506-2、参数506-3、功能506-4、返回值506-5、说明506-6、用法506-6-1、数据准备506-6-2、代码示例506-6-3、结果输出507、pandas.DataFrame.round方法507-1、语法507-2、参数507-3、功能507-4、返回值507-5、说明507-6、用法507
- 大模型基础知识-LoRA与QLoRA
破壁者-燕
深度学习
介绍LoRA与QLoRA1.LoRA(Low-RankAdaptation)LoRA是一种用于大规模语言模型(LLM)的参数高效微调技术,旨在减少微调大模型所需的计算资源和存储空间。LoRA的核心思想是将全量参数更新分解为低秩矩阵的形式,从而显著减少参数数量和计算开销。核心思想:低秩分解:将大模型的权重矩阵表示为两个低秩矩阵的乘积。这种分解方法不仅保留了原始模型的表示能力,还显著减少了微调过程中需
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 深度学习速通系列:LoRA微调是什么
Ven%
深度学习速通系列人工智能深度学习python机器学习nlp
LoRA微调(Low-RankAdaptation)是一种用于大型预训练语言模型(LLM)的高效微调技术。它的核心思想是在不改变预训练模型权重的前提下,通过在模型的Transformer层中引入可训练的低秩矩阵来实现模型的微调。这种方法可以显著减少训练参数的数量,从而降低对计算资源的需求。LoRA微调的原理:LoRA微调方法建议冻结预训练模型的权重,并在每个Transformer块中注入可训练的低
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- Re-ranking 从原理到实现的两种主流方法
lichunericli
RAG人工智能自然语言处理
原文地址:https://pub.towardsai.net/advanced-rag-04-re-ranking2024年2月14日重新排序在检索增强生成(RAG)过程中起着至关重要的作用。在简单的RAG方法中,可以检索大量上下文,但并非所有上下文都一定与问题相关。重新排序允许对文档进行重新排序和过滤,将相关文档置于最前面,从而提高RAG的有效性。本文介绍了RAG的重新排名技术,并演示了如何使用
- Java修炼之道--并发编程
weixin_30312557
运维面试操作系统
原作地址:https://github.com/frank-lam/2019_campus_apply前言在本文将总结多线程并发编程中的常见面试题,主要核心线程生命周期、线程通信、并发包部分。主要分成“并发编程”和“面试指南”两部分,在面试指南中将讨论并发相关面经。参考资料:《Java并发编程实战》第一部分:并发编程1.线程状态转换新建(New)创建后尚未启动。可运行(Runnable)可能正在运
- 推荐Rerank二次重排序算法
陈敬雷-充电了么-CEO兼CTO
算法人工智能hadoop机器学习人工智能大数据数据挖掘编程语言
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】推荐Rerank二次重排序算法前言推荐的Rerank排序有两种情况,一个是离线计算的时候为每个用户提前用Rerank排序算法算好推荐结果,另一个是在实时在线Web推荐引擎里做二次融合排序的时候。但不管哪一种用到的算法是一样的。比如用逻辑回归、随机森
- js(vue)如何实现页面截图,向后端传递,生成PDF
R-sz
vue.jsjavascript前端
利用htmm12canvas首先引入npminstallexpressmulter#或者yarnaddexpressmulter代码如下:-->中间代码省略import{nextTick,ref,provide}from"vue";import{useGetResizeBodySize}from'@/hooks/useGetScaleHeight'importEquConsumeSpareRank
- NVIDIA NCCL 源码学习(八)- 数据通信链路transport的建立
KIDGINBROOK
ncclncclgpucuda
上节以ringGraph为例介绍了机器间channel的连接过程,现在环里每个rank都知道了从哪个rank接收数据以及将数据发送给哪个rank,本节具体介绍下P2P和rdmaNET场景下数据通信链路的建立过程。上节说到nccl通过ncclTransportP2pSetup完成了数据通信链路的建立,还是以上节两机十六卡的环为例:第一台机器的环:graph->intra:GPU/0GPU/7GPU/
- arp欺骗软件(来自互联网)
weixin_30746117
下载戳我~转载于:https://www.cnblogs.com/frankying/p/6595094.html
- 【自用14.3】C++俄罗斯方块-方块的表示
.远_
Pro学习笔记C++c++开发语言算法游戏
该系列文章会根据项目的编写步骤来出方块的表示由于设备问题,暂时出的代码是未进行运行检验的,后期会补上运行后的版本#include//C语言形式的输入输出#include//图形库的头文件intscore=0;//总分intrank=0;//等级#defineBLOCK_COUNT5#defineBLOCK_WIDTH5#defineBLOCK_HEIGHT5intblock[BLOCK_COUNT
- 爆炸消息:RNG打完MSI,“家”被偷了,Bin离队加入BLG!
游戏酱park
★游戏酱park原创万万没想到,lpl春季赛转会期结束后,LPL还能出现这么大的瓜:Bin、呼吸哥Breathe、Uzi成为了转会舞台中心的焦点。大主播Doinb在直播爆料Bin、呼吸哥Breathe互换队伍,同时Doinb还爆料Uzi百分之九十九离队。有玩家发现Uzi在韩服rank的训练强度非常低,一周只打了20场不到的排位赛,把大部分时间用来玩FPS游戏,Uzi征战夏季赛的可能性几乎为零。随着
- 人人都能懂的机器学习——用Keras搭建人工神经网络02
苏小菁在编程
感知机1957年,FrankRosenblatt发明了感知机,它是最简单的人工神经网络之一。感知机是基于一个稍稍有些不同的人工神经元——阈值逻辑元(TLU)(见图1.4),有时也被称为线性阈值元(LTU)。这种神经元的输入和输出不再是二进制的布尔值,而是数字。每一个输入连接都与权重值相关联,TLU将各个输入加权取和然后将其带入一个阶跃函数,并输出结果:上述计算过程如下图1.4所示图1.4阈值逻辑单
- Bert系列:论文阅读Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline
凝眸伏笔
nlp论文阅读bertrerankerretrieval
一句话总结:提出LocalizedContrastiveEstimation(LCE),来优化检索排序。摘要预训练的深度语言模型(LM)在文本检索中表现出色。基于丰富的上下文匹配信息,深度LM微调重新排序器从候选集合中找出更为关联的内容。同时,深度lm也可以用来提高搜索索引,构建更好的召回。当前的reranker方法并不能完全探索到检索结果的效果。因此,本文提出了LocalizedContrast
- 几款免费的时序数据库对比
易道合之逍遥峰
时序数据库数据库
InfluxDB、TDengine、OpenTSDB、QuestDB都是当前主流的时序数据库,它们在性能、功能、适用场景等方面各有特点。下面将从多个维度对这四个数据库进行对比分析:一、性能InfluxDB:高效的时间序列数据写入性能,自定义TSM引擎,快速数据写入和高效数据压缩。排名在DB-EnginesRanking时序型数据库排行榜上常常名列前茅,具有极高的性能优势。TDengine:高性能、
- NC01--股票(一次交易)、合并k个有序链表、字符串的排列、接雨水问题、输出二叉树的右视图
minastinis of king
#牛客网高频50题
1、股票(一次交易)https://www.nowcoder.com/practice/64b4262d4e6d4f6181cd45446a5821ec?tpId=117&&tqId=37717&rp=1&ru=/activity/oj&qru=/ta/job-code-high/question-ranking根本用不上什么动态规划,直接遍历数组,然后找到最低价格,然后在后面减去最低价格,得到利
- 【Leetcode 2347 】 最好的扑克手牌 —— 哈希表
自学前端_又又
前端刷leetCodeleetcode算法数据结构前端javascript
给你一个整数数组ranks和一个字符数组suit。你有5张扑克牌,第i张牌大小为ranks[i],花色为suits[i]。下述是从好到坏你可能持有的手牌类型:"Flush":同花,五张相同花色的扑克牌。"ThreeofaKind":三条,有3张大小相同的扑克牌。"Pair":对子,两张大小一样的扑克牌。"HighCard":高牌,五张大小互不相同的扑克牌。请你返回一个字符串,表示给定的5张牌中,你
- 基于detectron2框架的深度学习模型载入自定义数据集
Midsummer-逐梦
解决方案深度学习人工智能计算机视觉
基于detectron2框架的深度学习模型载入自定义数据集一、前言最近在做微光目标检测的研究工作,使用了Rank_DETR;这个模型是基于detrex框架,而detrex框架又是基于detectron2的。找了一圈没找到载入数据集的地方,后面查阅了资料得知要用API进行注册。二、步骤注册数据集:在脚本中,我们首先要注册数据集。Detectron2提供了多种注册数据集的方式,常用的是register
- Hive SQL练习之影评案例
软件手
Hivemysqlhivehadoopsql大数据
找的练习hive,内容非原创链接https://www.cnblogs.com/frankdeng/p/9309668.html一、建表,导入数据1、建表[root@masterhadoop]#hiveLogginginitializedusingconfigurationinjar:file:/usr/local/src/apache-hive-1.2.2-bin/lib/hive-common
- arduino课件05倾斜传感器
Mr洋1
第五课倾斜传感器1.英文单词的学习单词意思circuit电路resistor电阻tilt倾斜franklin2.BenjaminFranklin英文网站学习:https://www.britannica.com/biography/Benjamin-Franklin*BenjaminFranklinoriginallywrotethatelectricityflowsfromthepositive
- 数学基础 -- 线性代数之矩阵的秩
sz66cm
线性代数矩阵机器学习
矩阵的秩:概念与应用1.概述矩阵的秩(Rank)是线性代数中的一个基本概念,它衡量了矩阵中行或列向量的线性无关性。矩阵的秩在解线性方程组、矩阵分解、确定线性变换的维度等方面起着重要作用。2.矩阵的秩的定义矩阵的秩可以从以下几个角度进行定义:行秩:矩阵的行秩是指矩阵中最大线性无关行向量的个数。列秩:矩阵的列秩是指矩阵中最大线性无关列向量的个数。在一个矩阵中,行秩和列秩总是相等的,因此我们通常将矩阵的
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-ms-swift-单机单卡-V100(十二)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用ms-swift去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量
- 【自用14.19】C++俄罗斯方块
.远_
Pro学习笔记C++c++java算法
该系列文章会根据项目的编写步骤来出由于设备问题,暂时出的代码是未进行运行检验的,后期会补上运行后的版本设计消除功能-check函数实现#include//C语言形式的输入输出#include//图形库的头文件#include#include//kbhit()intscore=0;//总分intrank=0;//等级#defineBLOCK_COUNT5#defineBLOCK_WIDTH5#def
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo