- 2024 年高教社杯全国大学生数学建模竞赛 E 题 交通流量管控 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024数学建模国赛2024数学建模国赛E题2024高教社杯
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!随着城市化进程的加快、机动车的快速普及,以及人们活动范围的不断扩大,城市道路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问
- 2024 年高教社杯全国大学生数学建模竞赛 D 题 反潜航空深弹命中概率问题 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模数学建模国赛2024数学建模国赛2024年高教社杯D题matlabpython
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或浅
- AI人工智能深度学习算法:卷积神经网络的原理与应用
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:卷积神经网络的原理与应用作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的兴起与深度学习的崛起人工智能(AI)是指计算机科学的一个分支,旨在创造能够执行通常需要人类智能的任务的智能机器,例如学习、解决问题和决策。近年来,人工智能取得了显著的进展,这在很大程度上归功于深度学习的崛起,深度学习是一种强大的机器学习形式,它使用具有多个层的深度神经网络来学习数据中的复杂模式
- 人工智能深度学习入门指南
白猫a~
编程深度学习人工智能
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。这些概念是深度学习的基
- 人工智能深度学习发展历程-纪年录
犟小孩
技术文档计算机视觉
前言为了理解模型之间的改进关系、明确深度学习的发展目标、提高自身对模型的深度理解、贯彻爱与和平的理念。总之,我做了如下表格。时间重大突破模型改进详细信息1847SGD随机梯度下降1995SVM支持向量机1982RNN循环神经网络,序列模型1986反向传播1997LSTM长短期时间记忆1998Lenet-5首次应用于手写识别2001随机森林2010ReLUrelu激活函数,解决梯度消失2012Dro
- 【NLP冲吖~】〇、NLP(自然语言处理、大纲)
漂泊老猫
自然语言处理NLP自然语言处理人工智能
0、自然语言处理自然语言处理是一门用于理解人类语言、情感和思想的技术,是人工智能深度学习领域的一项重要分支,去年爆火的GPT就是该分支的一个重要落地的应用。随着计算机算力的不断提升,自然语言处理技术近年来发展迅速,有代表模型BERT和GPT等;应用场景有chatbot、知识图谱、情感分析等。自然语言是与机器语言相对的一个概念,它是指人类在一定条件下自然形成和使用的口头或书面的语言,如汉语、英语、法
- 深度学习十年感悟,从入门到放弃
Ada's
Latex科研码上生活反思觉悟深度学习人工智能
写这篇在此主要是对自己对未来的思考和探索,绝没有指导和影响大家意思,我要准备放弃深度学习算法应用和研究去从事下一代操作系统和模拟信号处理芯片方面工作,主要是为自己以后事业机器人领域做点储备。14年左右从Octave及Matlab数学建模开始入门人工智能深度学习领域。当时情况是13年底我请教前辈后,在思考我们专业的未来是交通调度那么就是通信调度,最厉害的行业内也就是统计分析之类的很多体力性加上初步的
- 【ArcGIS Pro微课1000例】0046:深度学习--汽车检测
刘一哥GIS
《ArcGISarcgis深度学习汽车ArcGISpro人工智能
本实验讲述ArcGISPro中人工智能深度学习应用之–汽车检测。文章目录一、学习效果二、工具介绍三、案例实现四、注意事项一、学习效果采用深度学习工具,可以很快速精准的识别汽车。案例一:案例二:下面讲解GIS软件实现流程。二、工具介绍该案例演示的是ArcGISPro中深度学习工具中的【使用深度学习检测对象】,应用的模型是汽车检测模型CarDetection_USA.dlpk,大家可以从配套的实验数据
- PyTorch深度学习原理与实现
slience_me
机器学习深度学习pytorch人工智能
PyTorch深度学习原理与实现1.引言深度学习发展历程感知机网络(解决线性可分问题,20世纪40年代)BP神经网络(解决线性不可分问题,20世纪80年代)深度神经网络(海量图片分类,2010年左右)常见深度神经网络:CNN、RNN、LSTM、GRU、GAN、DBN、RBM……深度应用领域计算机视觉语音识别自然语言处理人机博弈深度学习、机器学习以及人工智能深度学习VS传统机器学习深度神经网络VS浅
- 亚马逊云AI大语言模型应用下的创新Amazon Transcribe的使用
lqj_本人
推广人工智能语言模型自然语言处理
Transcribe简介语音识别技术,也被称为自动语音识别(AutomaticSpeechRecognition,简称ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。语音识别技术已经发展了几十年,直到2009年,Hinton把人工智能深度学习解决方案引入语音识别中,语音识别才取得了巨大突破。AmazonTranscribe是一项自动语音识别(AS
- 第五章:人工智能深度学习教程-人工神经网络(第一节-人工神经网络及其应用)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理知识图谱生成对抗网络
当您阅读这篇文章时,您体内的哪个器官正在思考这个问题?当然是大脑啦!但你知道大脑是如何运作的吗?嗯,它有神经元或神经细胞,它们是大脑和神经系统的主要单位。这些神经元接收来自外界的感觉输入并进行处理,然后提供可能作为下一个神经元的输入的输出。这些神经元中的每一个都通过突触以复杂的排列方式与其他神经元相连。现在,您想知道这与人工神经网络有什么关系吗?嗯,人工神经网络是根据人脑中的神经元建模的。让我们详
- 第四章:人工智能深度学习教程-激活函数(第四节-深入理解激活函数)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘计算机视觉自然语言处理
什么是激活函数?在人工神经网络中,节点的激活函数定义了该节点或神经元对于给定输入或一组输入的输出。然后将该输出用作下一个节点的输入,依此类推,直到找到原始问题的所需解决方案。它将结果值映射到所需的范围,例如0到1或-1到1等。这取决于激活函数的选择。例如,使用逻辑激活函数会将实数域中的所有输入映射到0到1的范围内。二元分类问题的示例:在二元分类问题中,我们有一个输入x,比如一张图像,我们必须将其分
- 第四章:人工智能深度学习教程-激活函数(第二节-ANN 中激活函数的类型)
geeks老师
人工智能深度学习人工智能深度学习神经网络开发语言机器学习计算机视觉自然语言处理
生物神经网络以人工神经网络的形式建模,其中人工神经元模拟生物神经元的功能。人工神经元如下图所示:人工神经元的结构每个神经元由三个主要部分组成:一组“i”个突触,其权重为wi。信号xi形成具有权重wi的第i个突触的输入。任何权重的值都可以是正值或负值。正权重具有非凡的效果,而负权重对求和点的输出具有抑制作用。输入信号的求和点由相应的突触权重加权。因为它是加权输入信号的线性组合器或加法器,所以求和点的
- 第四章:人工智能深度学习教程-激活函数(第三节-Pytorch 中的激活函数)
geeks老师
人工智能深度学习人工智能深度学习开发语言pytorch机器学习自然语言处理语音识别
在本文中,我们将了解PyTorch激活函数。目录什么是激活函数以及为什么使用它们?Pytorch激活函数的类型ReLU激活函数:Python3LeakyReLU激活函数:Python3S形激活函数:Python3Tanh激活函数:Python3Softmax激活函数:Python3什么是激活函数以及为什么使用它们?激活函数是Pytorch的构建块。在讨论激活函数的类型之前,让我们首先了解人脑中神经
- 第四章:人工智能深度学习教程-激活函数(第一节-激活函数)
geeks老师
人工智能深度学习人工智能深度学习神经网络开发语言自然语言处理计算机视觉机器学习
简单来说,人工神经元计算其输入的“加权和”并添加偏差,如下图所示的净输入。从数学上来说,现在净输入的值可以是从-inf到+inf之间的任何值。神经元并不真正知道如何绑定到值,因此无法决定激发模式。因此激活函数是人工神经网络的重要组成部分。他们基本上决定神经元是否应该被激活。因此它限制了净输入的值。激活函数是一种非线性变换,我们在将输入发送到下一层神经元或将其最终确定为输出之前对输入进行非线性变换。
- 第三章:人工智能深度学习教程-基础神经网络(第三节-Tensorflow 中的多层感知器学习)
geeks老师
人工智能深度学习人工智能深度学习神经网络
在本文中,我们将了解多层感知器的概念及其使用TensorFlow库在Python中的实现。多层感知器多层感知也称为MLP。它是完全连接的密集层,可将任何输入维度转换为所需的维度。多层感知是具有多个层的神经网络。为了创建神经网络,我们将神经元组合在一起,以便某些神经元的输出是其他神经元的输入。神经网络和TensorFlow的简单介绍可以在这里找到:神经网络TensorFlow简介多层感知器有一个输入
- 第三章:人工智能深度学习教程-基础神经网络(第一节-ANN 和 BNN 的区别)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘自然语言处理语言模型
你有没有想过建造大脑之类的东西是什么感觉,这些东西是如何工作的,或者它们的作用是什么?让我们看看节点如何与神经元通信,以及人工神经网络和生物神经网络之间有什么区别。1.人工神经网络:人工神经网络(ANN)是一种基于前馈策略的神经网络。之所以这样称呼,是因为它们不断地通过节点传递信息,直到到达输出节点。这也被称为最简单的神经网络类型。ANN的一些优点:无论数据类型如何(线性或非线性),都能够学习。人
- 合工大《数字媒体技术》课程调研报告-视频伪造
晓宜
媒体音视频人工智能
2022年《数字媒体技术》课程调研报告“视频伪造”技术调研日期:2022.10.01调研报告摘要众所周知,人工智能正迎来第三次发展浪潮,它既给社会发展带来了巨大机遇,同时也带来了诸多风险,人工智能对国家安全的影响已成为世界各国的重要关切和研究议程。作为人工智能深度学习领域的一个分支,Deepfake(深度伪造)技术在近几年迅速兴起,为国家间的政治抹黑、军事欺骗、经济犯罪甚至恐怖主义行动等提供了新工
- 第三章:人工智能深度学习教程-基础神经网络(第六节-ML深度学习层列表)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理集成学习迁移学习
要指定所有层按顺序连接的神经网络的架构,请直接创建层数组。要指定层可以有多个输入或输出的网络架构,请使用LayerGraph对象。使用以下函数创建不同的图层类型。输入层:功能描述图像输入层将图像输入网络应用数据标准化序列输入层将序列数据输入到网络。可学习层:功能描述卷积2d层对输入应用滑动过滤器。它通过沿输入垂直和水平移动滤波器并计算权重和输入的点积,然后添加偏差项来对输入进行卷积。转置Conv2
- 第三章:人工智能深度学习教程-基础神经网络(第五节-了解多层前馈网络)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘自然语言处理目标检测
让我们了解反向传播网络(BPN)中的误差是如何计算的以及权重是如何更新的。考虑下图中的以下网络。反向传播网络(BPN)上图中的网络是一个简单的多层前馈网络或反向传播网络。它包含三层,输入层有两个神经元x1和x2,隐藏层有两个神经元z1和z2,输出层有一个神经元yin。现在让我们写下每个神经元的权重和偏差向量。注:权重是随机取的。输入层:i/p–[x1x2]=[01]这里,由于它是输入层,因此仅存在
- 第三章:人工智能深度学习教程-基础神经网络(第四节-从头开始的具有前向和反向传播的深度神经网络 – Python)
geeks老师
人工智能深度学习python开发语言AI编程深度学习机器学习人工智能自然语言处理
本文旨在从头开始实现深度神经网络。我们将实现一个深度神经网络,其中包含一个具有四个单元的隐藏层和一个输出层。实施将从头开始,并实施以下步骤。算法:1.可视化输入数据2.确定权重和偏置矩阵的形状3.初始化矩阵、要使用的函数4.前向传播方法的实现5.实施成本计算6.反向传播和优化7.预测和可视化输出模型架构:模型架构如下图所示,其中隐藏层使用双曲正切作为激活函数,而输出层(即分类问题)使用sigmoi
- 第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理生成对抗网络语言模型
在本文中,我们将了解单层感知器及其使用TensorFlow库在Python中的实现。神经网络的工作方式与我们的生物神经元的工作方式相同。生物神经元的结构生物神经元具有三个基本功能接收外部信号。处理信号并增强是否需要发送信息。将信号传递给目标细胞,目标细胞可以是另一个神经元或腺体。同样,神经网络也能发挥作用。机器学习中的神经网络什么是单层感知器?它是最古老且最早引入的神经网络之一。它是由弗兰克·罗森
- 第三章:人工智能深度学习教程-人工智能与机器学习与深度学习之间的区别
geeks老师
人工智能深度学习人工智能深度学习机器学习图搜索算法生成对抗网络视觉检测自动驾驶
人工智能基本上是通过一组规则(算法)将人类智能融入机器的机制。人工智能是两个词的组合:“人工”是指由人类或非自然物体制造的东西,“智能”是指相应地理解或思考的能力。另一个定义可能是“人工智能基本上是训练机器(计算机)模仿人脑及其思维能力的研究”。人工智能侧重于3个主要方面(技能):学习、推理和自我纠正,以获得尽可能最大的效率。机器学习:机器学习基本上是一种研究/过程,它使系统(计算机)能够通过其拥
- 第二章:人工智能深度学习教程-深度学习简介
geeks老师
人工智能深度学习人工智能深度学习数据挖掘机器学习神经网络自然语言处理语音识别
深度学习是基于人工神经网络的机器学习的一个分支。它能够学习数据中的复杂模式和关系。在深度学习中,我们不需要显式地对所有内容进行编程。近年来,由于处理能力的进步和大型数据集的可用性,它变得越来越流行。因为它基于人工神经网络(ANN),也称为深度神经网络(DNN)。这些神经网络的灵感来自于人脑生物神经元的结构和功能,它们旨在从大量数据中学习。深度学习是机器学习的一个子领域,涉及使用神经网络来建模和解决
- 人工智能与深度神经网络,人工智能人工神经网络
「已注销」
人工智能dnn机器学习神经网络
人工智能中神经网络训练过程谷歌人工智能写作项目:神经网络伪原创人工智能深度学习的基础知识?在提及人工智能技术的时候,对于深度学习的概念我们就需要了解,只有这样才能更加容易理解人工智能的运行原理,今天,昆明电脑培训就一起来了解一下深度学习的一些基础知识写作猫。首先,什么是学习率?学习率(LearningRate,LR。常用η表示。)是一个超参数,考虑到损失梯度,它控制着我们在多大程度上调整网络的权重
- 第990期机器学习日报(2017-06-04)
ai100_ml
机器学习日报2017-06-04机器学习、深度学习研究者10张速查表@网路冷眼ACL2017杰出论文公布,国内四篇论文入选@机器之心Synced如何解释机器学习模型和结果@wx:全球人工智能深度学习多任务学习综述@wx:全球人工智能亚马逊AI博客:用机器学习自动调优数据库管理系统@网路冷眼@好东西传送门出品,由@AI100运营,过往目录见http://ml.memect.com订阅:关注微信公众号
- 开篇:百花齐放,百家争鸣
静电屏蔽
生死无门,福自己造。2018新春伊始,自媒体的春天也跟随而来。回顾2017年,这是神奇的一年!直播迎来黄金时代,人工智能深度学习充斥人们的视野,虚拟货币席卷全球,区块链爆发,游戏电竞迎来吃鸡时代,国内巨头动作频繁,首富几经易主,共享经济大行其道,还有太多太多。注定过去的一年是划时代的纪元,此前从未见过如此热闹的互联网生活!百度移动端布局以搜索为入口,成效可喜。过去巨头们拼的是平台,硬件,技术,哪知
- 初识人工智能
熊子豪
姓名:熊子豪学号:19011210143转载自https://blog.csdn.net/Harpoon_fly/article/details/84074645【嵌牛导读】我们正处在深度学习的时期,把握住机会在人工智能深度学习还未大量爆发的时期,多了解学习下,让自己跟进时代的步伐,当然未来的强化学习更是最主要的方向,技术更新迭代,你做好准备了么?【嵌牛鼻子】人工智能。【嵌牛提问】什么是人工智能,
- 人工智能深度学习,100天掌握所有人工智能深度学习 –第二章:( 第 1 – 10 天第一节线性代数-线性方程组)
wly476923083
人工智能人工智能深度学习线性代数机器学习深度学习神经网络自然语言处理数据挖掘目标检测
矩阵的迹:设A=[aij]nxn是n阶方阵,则对角元素之和称为矩阵的迹,记为tr(A)。tr(A)=a11+a22+a33+……….+ann矩阵迹的性质:设A和B为任意两个n阶方阵,则tr(kA)=ktr(A)其中k是标量。tr(A+B)=tr(A)+tr(B)tr(AB)=tr(A)-tr(B)tr(AB)=tr(BA)线性方程组的解:线性方程可以有三种可能的解:没有解决方案独特的解决方案无限解
- 人工智能深度学习,100天掌握所有人工智能深度学习 –第一章: 初学者完整指南(持续更新)
wly476923083
人工智能人工智能深度学习决策树算法机器学习深度学习人工智能数据库神经网络
它涉及开发可以自动从数据中学习模式和见解的算法,而无需显式编程。近年来,随着企业发现机器学习在推动创新、改进决策和获得竞争优势方面的潜力,机器学习变得越来越受欢迎。就业行业中的机器学习如果您有兴趣从事机器学习职业,您可能想知道您可以选择的薪水和职业选择。机器学习专业人士的需求量很大,并且可以获得有竞争力的薪水。根据Glassdoor的数据,美国机器学习工程师的平均基本工资约为每年114,000美元
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt